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Motivation

Adversarial training or adversarial purification?

e Adversarial training: It trains classifiers on adversarial examples

o Defense against seen threats

®

o Defense against unseen threats

Q

o  Training complexity

e Adversarial purification: It uses generative models to purify adversarial perturbations

®

o Defense against unseen threats

o Defense against seen threats

o  Training complexity*

Can we overcome the shortcomings of adversarial purification with a better generative prior?

* It assumes we already have pre-trained generative models. S nVII:%A



Motivation

Diffusion models have emerged as powerful generative models

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

Drift coefficient Diffusion coefficient

score function

- g(tdt+gt)dw@

Reverse SDE (noise — data)
(Song et al., 2021)

Guided-Diffusion (Dhariwal & Nichol, 2021)

How should we use a diffusion model as the purification model for adversarial defense?
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https://arxiv.org/search/cs?searchtype=author&query=Dhariwal%2C+P

DiffPure (Diffusion Purification)

It uses the forward and reverse processes of pre-trained diffusion models to

purify adversarial images
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How to Evaluate DiffPure on Strong Adaptive Attacks?

We use adjoint method to compute full gradients of reverse SDE for adaptive attacks

Challenge

o

o

Strong adaptive attacks (e.g. AutoAttack) require
computing full gradients of DiffPure

Naively backpropagating through SDE scales poorly in
memory

Our solution

(@]

o

Use adjoint method to compute gradient of SDE

Convert gradient computation to solving an augmented

SDE in Eq. (6)

Proposition 3.3. For the SDE in Eq. (4), the augmented
SDE that computes the gradient % of backpropagating
through it is given by
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where % is the gradient of the objective L w.rt. the
output £(0) of the SDE in Eq. (4), and
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with 1, and 04 representing the d-dimensional vectors of
all ones and all zeros, respectively.

Implemented in the “TorchSDE” library
(Li et al., 2020)
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Comparison with SOTA in RobustBench Benchmark: CIFAR-10

DiffPure has absolute improvements of up to +5% in robust accuracy

Method Extra Data Standard Acc Robust Acc
WideResNet-28-10 Method Extra Data Standard Acc Robust Acc
(Zhang etal, 2020) 89.36 59.96 WideResNet-28-10
(Gowal et al,, 2020) v 89.48 62.70 (Rony et al., 2019) X 89.05 66.41
(Wu et al., 2020) X 3536 5018 (Ding et al., 2020*) X 88.02 67.77
(Rebuffi et al,, 2021) X 87.33 61.72 (Wuetal, 2020° X BE.31 7285
(Gowal ot al.. 2021) i e 6524 (Sehwag et al., 2021) X 90.31 75.39
g % SUILLOTL TIELL0D (Rebuffi et al., 2021) X 91.79 78.32
T ;fs T T . . . . Ours X 91.0340.35 78.584-0.40
1deResNet-70- :
WideResNet-70-16
(Gowaletal, 2020) ¥ 91.10 66.02 ol st 2000, 7 ST R
((lée:uzfli :tt :11-,585(})) ;/( gg-gg gg-gg (Rebuffi et al., 2021) v 95.74 81.44
W , - - (Gowal et al., 2020) X 90.90 74.03
(Rebulffi et al., 2021) X 88.54 64.46 (Rebuffi et al., 2021) X 92.41 80.86
(Gowal et al., 2021) X % 33.73 0 71 23.68 Ours X 92.68-£0.56 80.60+0.57
Ours X .07+0. 71.29+0.55
AutoAttack Linf (eps=8/255) AutoAttack L2 (eps=0.5)
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Comparison with SOTA in RobustBench Benchmark: ImageNet

DiffPure has absolute improvements of up to +7% in robust accuracy

Method Extra Data Standard Acc Robust Acc
ResNet-50
(Engstrom et al., 2019) X 62.56 31.06
(Wong et al., 2020) X 55.62 26.95
(Salman et al., 2020) X 64.02 37.89
(Bai et al., 2021)" X 67.38 35.51
X

Ours

67.79+£0.43 40.93+1.96

WideResNet-50-2

(Salman et al., 2020) X 68.46 39.25
Ours X 71.16+0.75 44.39+0.95
DeiT-S
(Bai et al., 2021)" X 66.50 35.50
Ours X 73.6320.62 43.18+1.27

AutoAttack Linf (eps=4/255)
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Defense Against Unseen Threats: CIFAR-10

DiffPure has absolute improvements of up to +36% in robust accuracy

Robust Acc
Method Standard Acc 7= 7 SiAdy
Ady. Training with £, (Laidlaw et al., 2021) 86.8 49.0 19.2 4.8
Adyv. Training with ¢z (Laidlaw et al., 2021) 85.0 39.5 47.8 7.8
Adv. Training with StAdv (Laidlaw et al., 2021) 86.2 0.1 0.2 53.9
PAT-self (Laidlaw et al., 2021) 824 30.2 34.9 46.4
ADV. CRAIG (Dolatabadi et al., 2021) 83.2 40.0 33.9 49.6
ADV. GRADMATCH (Dolatabadi et al., 2021) 83.1 39.2 34.1 48.9
Ours 88.2+0.8 70.0+1.2 70.94+0.6 55.01+0.7

AutoAttack Linf (eps=8/255), AutoAttack L2 (eps=0.5) and StAdv (eps=0.05)
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Comparison with Other Purification Methods

DiffPure has absolute improvements of +15% on CelebA-HQ and +11% on CIFAR-10 in
robust accuracy

(a) CelebA-HQ (b) CIFAR-10
Method Purification  Standard Acc Robust Acc Method Purification Standard Acc Robust Acc
(Vahdat & Kautz, 2020) VAE 99.43 0.00 (Song et al., 2018) Gibbs Update 95.00 9.00
(Karras et al., 2020) GAN+OPT 97.76 10.80 (Yang et al., 2019) Mask+Recon. 94.00 15.00
(Chai et al., 2021)  GAN+ENC+OPT 99.37 26.37 (Hill et al., 2021) EBM+LD 84.12 54.90
(Richardson et al., 2021) GAN+ENC 93.95 75.00 (Yoon et al., 2021) DSM+LD* 86.14 70.01
Ours (t* = 0.4) Diffusion 03.874+0.18 89.47+1.18 Ours (t* = 0.075) Diffusion  91.03+0.35 77.43+0.19
Ours (t* = 0.5) Diffusion 93.774+0.30 90.63+1.10 Ours (t* = 0.1) Diffusion  89.02+0.21 81.40+0.16

BPDA+EOT Linf (eps=16/255 for CelebA-HQ, eps=8/255 for CIFAR-10)

<A NVIDIA.



Qualitative Results of DiffPure on CelebA-HQ

DiffPure removes adversarial perturbations on different attribute classifiers
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