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Latent Multiple Time Scales in Deep Learning

WideResNet-16 trained on patch-augmented [Li,Wei & Ma, NeurlPs 2019] CIFAR-10 data: |

20% is patch-free, 16% has only the patch, and the rest has both data and patch.
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Latent Multiple Time Scales in Deep Learning

WideResNet- 16 trained on patch-augmented [Li,Wei & Ma, NeurlPs 2019] CIFAR- 10 data: E ~|,
20% is patch-free, 16% has only the patch, and the rest has both data and patch. '

Optimizer: SGD with momentum with weight decay.
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A net trained using a:
- Small learning rate (blue) memorizes patch.

- Large learning rate (orange) gives higher accuracy on clean data.
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Latent Multiple Time Scales in Deep Learning

WideResNet- 16 trained on patch-augmented [Li,Wei & Ma, NeurlPs 2019] CIFAR- 10 data: E _|,

20% is patch-free, 16% has only the patch, and the rest has both data and patch.

Optimizer: SGD with momentum with weight decay.
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A net trained using a:
- Small learning rate (blue) memorizes patch.
- Large learning rate (orange) gives higher accuracy on clean data.

- Our multirate approach (green) can perform well on both.
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Multirate Methods

Two time-scales example:

Partition model (+ accompanying momentum) parameters ® = (O, Q).

k updates

h
Join
)

Fast components O are updated every step with step size A
Slow components O are updated every k steps with step size hg = kh
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Partition-based Multirate Approach

Separate neural network parameters into different parts.
You have a choice!

Examples: layer-wise, weight vs. biases, or random subgroups.
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Partition-based Multirate Approach

Separate neural network parameters into different parts.
You have a choice!

Examples: layer-wise, weight vs. biases, or random subgroups.

Act as an add-on to existing optimization schemes: they can be combined with any
desired base algorithm.

If base algorithm SGD (as used in PyTorch code):

ps := ups + Vo  L(0s,0F
0s := 05 — hps
for:=1,2,....,kdo

pr := ppr + Vo, L(0s,0F)
OF :=0p — Lpp
end
with momentum p and loss &
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Partition-based Multirate Approach

Separate neural network parameters into different parts.
You have a choice!

Examples: layer-wise, weight vs. biases, or random subgroups.

Act as an add-on to existing optimization schemes: they can be combined with any
desired base algorithm.

If base algorithm SGD (as used in PyTorch code):

ps := ups + Vo L(0s,0F
Os := s —|Hps
for:=1,2,...,kdo

pr := upr + Vo, L(0s,0F)
9}:‘ = 91:‘ — %F
end
with momentum p and loss &
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Partition-based Multirate Approach

Separate neural network parameters into different parts.
You have a choice!

Examples: layer-wise, weight vs. biases, or random subgroups.

Act as an add-on to existing optimization schemes: they can be combined with any
desired base algorithm.

If base algorithm SGD (as used in PyTorch code):

With linear drift:
ps = pups + Vo L(0s,0F)
for:=1,2,...,kdo

pF = ppr + Vo L(0s,0F)
OF == 0p — Lpr

Without linear drift:
ps = ups + Vo L(0s,0F
0s :=0s — hps
for:=1,2,....,kdo

pr := ppr + Vo, L(0s,0F)
OF :=0p — Lpp
end
with momentum p and loss &

Os :=0s — 1ps «
end
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Partition-based Multirate Approach

Separate neural network parameters into different parts.
You have a choice!

Examples: layer-wise, weight vs. biases, or random subgroups.

Act as an add-on to existing optimization schemes: they can be combined with any
desired base algorithm.

If base algorithm SGD (as used in PyTorch code):

With linear drift:
ps = pups + Vo L(0s,0F)
for:=1,2,...,kdo

pF = ppr + Vo L(0s,0F)
OF == 0p — Lpr

Without linear drift:
ps = ups + Vo L(0s,0F
0s :=0s — hps
for:=1,2,....,kdo

pr = ppr + Vo, L(0s,0F)
OF :=0p — Lpp
end

Os :=0s — 1ps «
end

with momentum p and loss & We compare convergence properties with vanilla SGD.
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Application: Transfer Learning

Basics of transfer learning:

 Start with pre-trained model on large datasets, e.g., ImageNet.

* Remove task-specific layers and re-train (part of) network on new task.
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Application: Transfer Learning

Basics of transfer learning:

 Start with pre-trained model on large datasets, e.g., ImageNet.

* Remove task-specific layers and re-train (part of) network on new task.

To obtain computational speed-up:
Split net in two parts: final layer(s) as the fast part, rest is slow part.
Only need to compute gradients for full network every k steps!
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Application: Transfer Learning

Basics of transfer learning:

 Start with pre-trained model on large datasets, e.g., ImageNet.

* Remove task-specific layers and re-train (part of) network on new task.

To obtain computational speed-up:
Split net in two parts: final layer(s) as the fast part, rest is slow part.
Only need to compute gradients for full network every k steps!

Example for a ResNet architecture:

Forward pass —>
Backward pass parameters
Conv Conv|__ Conv 4— Fast parameters
Input == 5} ek Block| > Block Laye Output

For a ResNet-34 architecture fast parameters are only 0.024% of total.
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Application: Transfer Learning

Forward pass =P

Backward pass parameters
Conv > Conv Fc = Fast parameters
Block nee Block Layer Output

ResNet-50, CIFAR-100 data
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Application: Transfer Learning

ResNet-50, CIFAR-100 data DistilBERT, SST-2 data
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Application: Transfer Learning

ResNet-50, CIFAR-100 data DistilBERT, SST-2 data
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Can train in half the time, without losing performance!
Full ablation studies in paper.
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Take-aways

Multirate methods can be used to enhance current neural network training techniques!
The proposed techniques:
* Act as add-on to existing optimizers.

e Can learn different features present in the data.

e Can train deep nets for transfer learning settings in half the time, without losing accuracy.
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Take-aways

Multirate methods can be used to enhance current neural network training techniques!

The proposed techniques:
* Act as add-on to existing optimizers.
e Can learn different features present in the data.

e Can train deep nets for transfer learning settings in half the time, without losing accuracy.

Extensions

C H)’bl"ld optimization schemes [Leimkuhler, Matthews, Viaar, 2019].
* Combine with well-known machine learning techniques & apply to other settings.

« Different splitting choices of network parameters
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Take-aways

Multirate methods can be used to enhance current neural network training techniques!

The proposed techniques:
* Act as add-on to existing optimizers.

e Can learn different features present in the data.

e Can train deep nets for transfer learning settings in half the time, without losing accuracy.

Extensions

C H)’bl"ld optimization schemes [Leimkuhler, Matthews, Viaar, 2019].

* Combine with well-known machine learning techniques & apply to other settings.

Multirate
SGD
SGD with dropout
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