: THE UNIVERSITY of EDINBURGH

Multirate Training of Neural Networks

Tiffany Vlaar and Ben Leimkuhler

Get in touch at:Tiffany.Vlaar@ed.ac.uk

ICML 2022

Latent Multiple Time Scales in Deep Learning

WideResNet-16 trained on patch-augmented [Li,Wei & Ma, NeurlPs 2019] CIFAR-10 data: |

20% is patch-free, 16% has only the patch, and the rest has both data and patch.

ICML 2022

Latent Multiple Time Scales in Deep Learning

WideResNet- 16 trained on patch-augmented [Li,Wei & Ma, NeurlPs 2019] CIFAR- 10 data: E ~|,
20% is patch-free, 16% has only the patch, and the rest has both data and patch. '

Optimizer: SGD with momentum with weight decay.

o]
o
(]
o

~

o
]
o

~
o

[e)]
o

ul

o
wu
o

Clean Accuracy (%)

—
o
>
<
>
9
©
—_
=]
O
]
<
<
O
-t
©
o

IN
o

[e)]
Augmented Accuracy (%)

»
o

A net trained using a:
- Small learning rate (blue) memorizes patch.

- Large learning rate (orange) gives higher accuracy on clean data.

ICML 2022

Latent Multiple Time Scales in Deep Learning

WideResNet- 16 trained on patch-augmented [Li,Wei & Ma, NeurlPs 2019] CIFAR- 10 data: E _|,

20% is patch-free, 16% has only the patch, and the rest has both data and patch.

Optimizer: SGD with momentum with weight decay.

(o]
o

~
o

—— h =0.004
h=0.1
—— Multirate

u

Clean Accuracy (%)
[e)]
o

—_
X
<
>
)
©
—_
=]
O
V]
<
<
O
-t
©
o

—— h =0.004
h=0.1
—— Multirate

—— h =0.004
h=0.1
—— Multirate

S
o

Augmented Accuracy (%)

w
o

A net trained using a:
- Small learning rate (blue) memorizes patch.
- Large learning rate (orange) gives higher accuracy on clean data.

- Our multirate approach (green) can perform well on both.

ICML 2022

Multirate Methods

Two time-scales example:

Partition model (+ accompanying momentum) parameters ® = (O, Q).

k updates

h
Join
)

Fast components O are updated every step with step size A
Slow components O are updated every k steps with step size hg = kh

ICML 2022

Partition-based Multirate Approach

Separate neural network parameters into different parts.
You have a choice!

Examples: layer-wise, weight vs. biases, or random subgroups.

ICML 2022

Partition-based Multirate Approach

Separate neural network parameters into different parts.
You have a choice!

Examples: layer-wise, weight vs. biases, or random subgroups.

Act as an add-on to existing optimization schemes: they can be combined with any
desired base algorithm.

If base algorithm SGD (as used in PyTorch code):

ps := ups + Vo L(0s,0F
0s := 05 — hps
for:=1,2,....,kdo

pr := ppr + Vo, L(0s,0F)
OF :=0p — Lpp
end
with momentum p and loss &

ICML 2022

Partition-based Multirate Approach

Separate neural network parameters into different parts.
You have a choice!

Examples: layer-wise, weight vs. biases, or random subgroups.

Act as an add-on to existing optimization schemes: they can be combined with any
desired base algorithm.

If base algorithm SGD (as used in PyTorch code):

ps := ups + Vo L(0s,0F
Os := s —|Hps
for:=1,2,...,kdo

pr := upr + Vo, L(0s,0F)
9}:‘ = 91:‘ — %F
end
with momentum p and loss &

ICML 2022

Partition-based Multirate Approach

Separate neural network parameters into different parts.
You have a choice!

Examples: layer-wise, weight vs. biases, or random subgroups.

Act as an add-on to existing optimization schemes: they can be combined with any
desired base algorithm.

If base algorithm SGD (as used in PyTorch code):

With linear drift:
ps = pups + Vo L(0s,0F)
for:=1,2,...,kdo

pF = ppr + Vo L(0s,0F)
OF == 0p — Lpr

Without linear drift:
ps = ups + Vo L(0s,0F
0s :=0s — hps
for:=1,2,....,kdo

pr := ppr + Vo, L(0s,0F)
OF :=0p — Lpp
end
with momentum p and loss &

Os :=0s — 1ps «
end

ICML 2022

Partition-based Multirate Approach

Separate neural network parameters into different parts.
You have a choice!

Examples: layer-wise, weight vs. biases, or random subgroups.

Act as an add-on to existing optimization schemes: they can be combined with any
desired base algorithm.

If base algorithm SGD (as used in PyTorch code):

With linear drift:
ps = pups + Vo L(0s,0F)
for:=1,2,...,kdo

pF = ppr + Vo L(0s,0F)
OF == 0p — Lpr

Without linear drift:
ps = ups + Vo L(0s,0F
0s :=0s — hps
for:=1,2,....,kdo

pr = ppr + Vo, L(0s,0F)
OF :=0p — Lpp
end

Os :=0s — 1ps «
end

with momentum p and loss & We compare convergence properties with vanilla SGD.
ICML 2022

Application: Transfer Learning

Basics of transfer learning:

 Start with pre-trained model on large datasets, e.g., ImageNet.

* Remove task-specific layers and re-train (part of) network on new task.

ICML 2022

Application: Transfer Learning

Basics of transfer learning:

 Start with pre-trained model on large datasets, e.g., ImageNet.

* Remove task-specific layers and re-train (part of) network on new task.

To obtain computational speed-up:
Split net in two parts: final layer(s) as the fast part, rest is slow part.
Only need to compute gradients for full network every k steps!

ICML 2022

Application: Transfer Learning

Basics of transfer learning:

 Start with pre-trained model on large datasets, e.g., ImageNet.

* Remove task-specific layers and re-train (part of) network on new task.

To obtain computational speed-up:
Split net in two parts: final layer(s) as the fast part, rest is slow part.
Only need to compute gradients for full network every k steps!

Example for a ResNet architecture:

Forward pass —>
Backward pass parameters
Conv Conv|__ Conv 4— Fast parameters
Input == 5} ek Block| > Block Laye Output

For a ResNet-34 architecture fast parameters are only 0.024% of total.
ICML 2022

Application: Transfer Learning

Forward pass =P

Backward pass parameters
Conv > Conv Fc = Fast parameters
Block nee Block Layer Output

ResNet-50, CIFAR-100 data

~

~

Multirate

Train All

Train Layer 2 + 3 + 4 + fc
Train Layer 3 + 4 + fc
Train Layer 4 + fc

Train Layer fc

)]
]

Test Accuracy (%)
Test Accuracy (%)

(o)}
o

wu
6]

4000 5000 6000 7000 8000 9000 10000
Training Time (in seconds)

ICML 2022

Application: Transfer Learning

ResNet-50, CIFAR-100 data DistilBERT, SST-2 data

(o]
o

(o]
(0]

~
(%
0
o)

~

Multirate, fast: Layer fc
Multirate, fast: Layer 5+fc
Train All

Train Layer 3 + 4 + 5 + fc
Train Layer 4 + 5 + fc
Train Layer 5 + fc

Train Layer fc

(o]
S

Multirate

Train All

Train Layer 2 + 3 + 4 + fc
Train Layer 3 + 4 + fc
Train Layer 4 + fc

Train Layer fc

(o))
]
o
N

(o]
o

o
S
>
(9}
©
—
35
(9}
9]
<
-+
(%]
(0]
|_

Test Accuracy (%)

(o)}
o

>
)
©
—_
>
]
]
<
-+~
0
()
|_

wu

6]
~
(0]

~
)]

4000 5000 6000 7000 8000 9000 10000
Training Time (in seconds)

200 300
Training Time (in seconds)

ICML 2022

Application: Transfer Learning

ResNet-50, CIFAR-100 data DistilBERT, SST-2 data

(o]
o

(o]
(0]

~

u
(%
0
o)

~
o

Multirate, fast: Layer fc
Multirate, fast: Layer 5+fc
Train All

Train Layer 3 + 4 + 5 + fc
Train Layer 4 + 5 + fc
Train Layer 5 + fc

Train Layer fc

(o]
S

Multirate

Train All

Train Layer 2 + 3 + 4 + fc
Train Layer 3 + 4 + fc
Train Layer 4 + fc

Train Layer fc

o 0
o N

60

Test Accuracy (%)

§ o
> >
|9} 9]
& o
3 3
B g
9]

<E6 <
7 7
(] ()}
et [

wu

6]
~
(0]

~
)]

4000 5000 6000 7000 8000 9000 10000
Training Time (in seconds)

200 300
Training Time (in seconds)

Can train in half the time, without losing performance!
Full ablation studies in paper.

ICML 2022

Take-aways

Multirate methods can be used to enhance current neural network training techniques!
The proposed techniques:
* Act as add-on to existing optimizers.

e Can learn different features present in the data.

e Can train deep nets for transfer learning settings in half the time, without losing accuracy.

ICML 2022

Take-aways

Multirate methods can be used to enhance current neural network training techniques!

The proposed techniques:
* Act as add-on to existing optimizers.
e Can learn different features present in the data.

e Can train deep nets for transfer learning settings in half the time, without losing accuracy.

Extensions

C H)’bl"ld optimization schemes [Leimkuhler, Matthews, Viaar, 2019].
* Combine with well-known machine learning techniques & apply to other settings.

« Different splitting choices of network parameters

ICML 2022

Take-aways

Multirate methods can be used to enhance current neural network training techniques!

The proposed techniques:
* Act as add-on to existing optimizers.

e Can learn different features present in the data.

e Can train deep nets for transfer learning settings in half the time, without losing accuracy.

Extensions

C H)’bl"ld optimization schemes [Leimkuhler, Matthews, Viaar, 2019].

* Combine with well-known machine learning techniques & apply to other settings.

Multirate
SGD
SGD with dropout

vl
N

« Different splitting choices of network parameters

ul
N

u
o

)]
0
o
A
c
o
2
©
°
©
>

Random Subgroups Partitioning

Transformer, Penn Treebank

B
o)

