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Characterizing and Overcoming the Greedy Nature of
Learning in Multi-Modal Deep Neural Networks

Dyna Do multi-modal DNNs attend to all modalities?

Ry Can we make multi-modal DNNs utilize all

RG modalities?

Does better utilization of all modalities imply

better generalization?

Dep

Nan Wu, Stanistaw Jastrzebski, Kyunghyun Cho and Krzysztof J. Geras.




Metric 1: Conditional utilization rate
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Metric 2: Conditional learning speed
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Metric 2: Conditional learning speed
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Observations: Imbalanced learning between modalities
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Greedy learner hypothesis

A multi-modal learning process is greedy when it
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Greedy learner hypothesis

A multi-modal learning process is greedy when it
produces models that rely on only one of the available
modalities.

The modality that the multi-modal DNN primarily
relies on is the modality that is the fastest to learn from.

We hypothesize that a multi-modal learning process,
in which a multi-modal DNN is trained to minimize the
sum of the modality-specific losses, is greedy.



Balanced multimodal learning
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Results

e Calibrating modality utilization-...,,

number of models
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e Improving generalization

ModelNet40 NVGesture-scratch NVGesture-pretrained

uni-modal (best) 89.34+0.39 77.5940.55 78.9842.02
multi-modal (vanilla) 90.09+0.58 79.81+1.14 83.204+0.21
+ RUBI (Cadene et al., 2019) 90.45+0.58 79.951+0.12 81.60+1.28
+ random (proposed) 91.36+0.10 79.88+0.90 82.64+0.84
+ guided (proposed) 91.37+0.28 80.22+0.73 83.821+1.45
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https://github.com/nyukat/greedy multimodal_learning
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