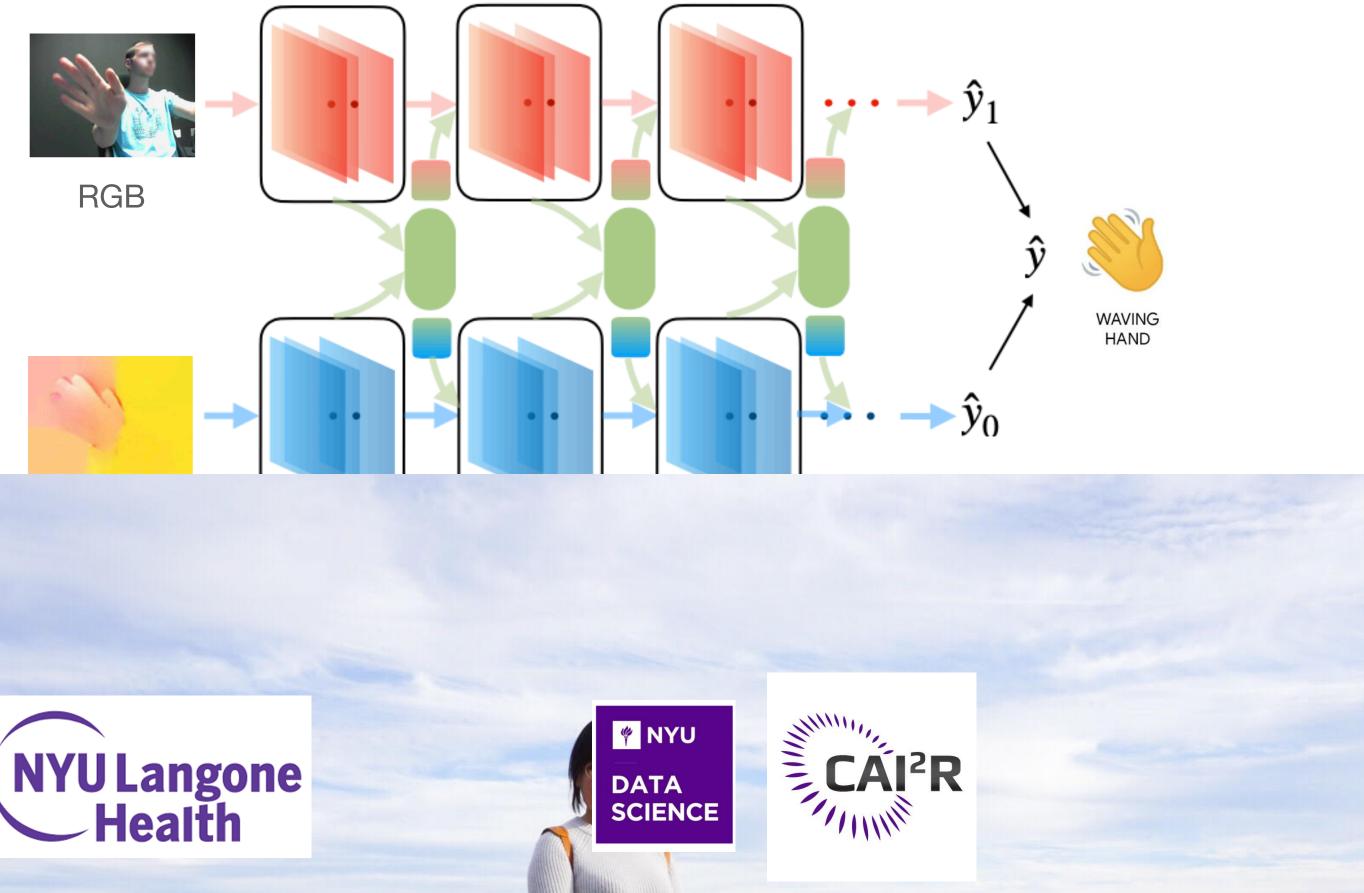
Characterizing and Overcoming the Greedy Nature of Learning in Multi-Modal Deep Neural Networks

Dynamic Hand Gestures Recognition



ztof J. Geras.

Characterizing and Overcoming the Greedy Nature of Learning in Multi-Modal Deep Neural Networks

Dyna RG

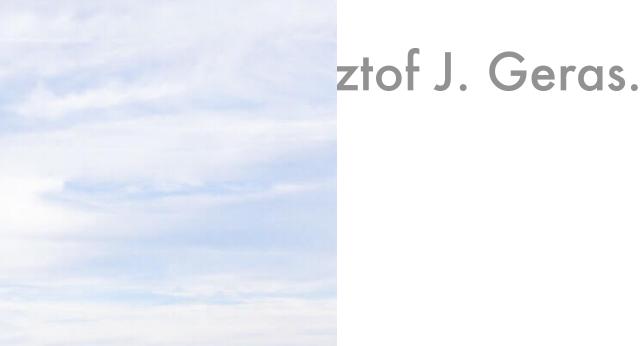
NYU Langone

— Health

WYU

DATA

- Do multi-modal DNNs attend to all modalities? Can we make multi-modal DNNs utilize all modalities?
 - **Does better utilization of all modalities imply better generalization?**

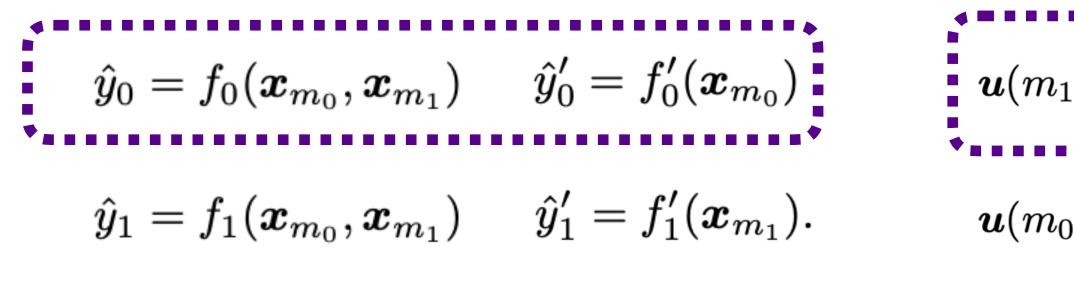


$$\hat{y}_0 = f_0({m x}_{m_0}, {m x}_{m_1})$$

$$\hat{y}_1 = f_1(x_{m_0}, x_{m_1})$$

$$\hat{y}_0 = f_0(m{x}_{m_0}, m{x}_{m_1}) ~~ \hat{y}_0' = f_0'(m{x}_{m_0})$$

 $\hat{y}_1 = f_1(m{x}_{m_0}, m{x}_{m_1}) \qquad \hat{y}_1' = f_1'(m{x}_{m_1}).$

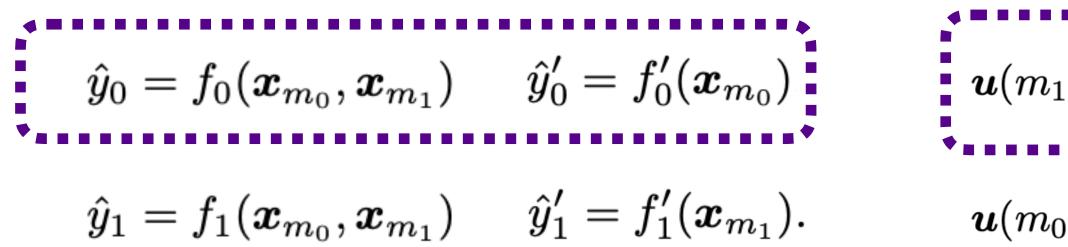


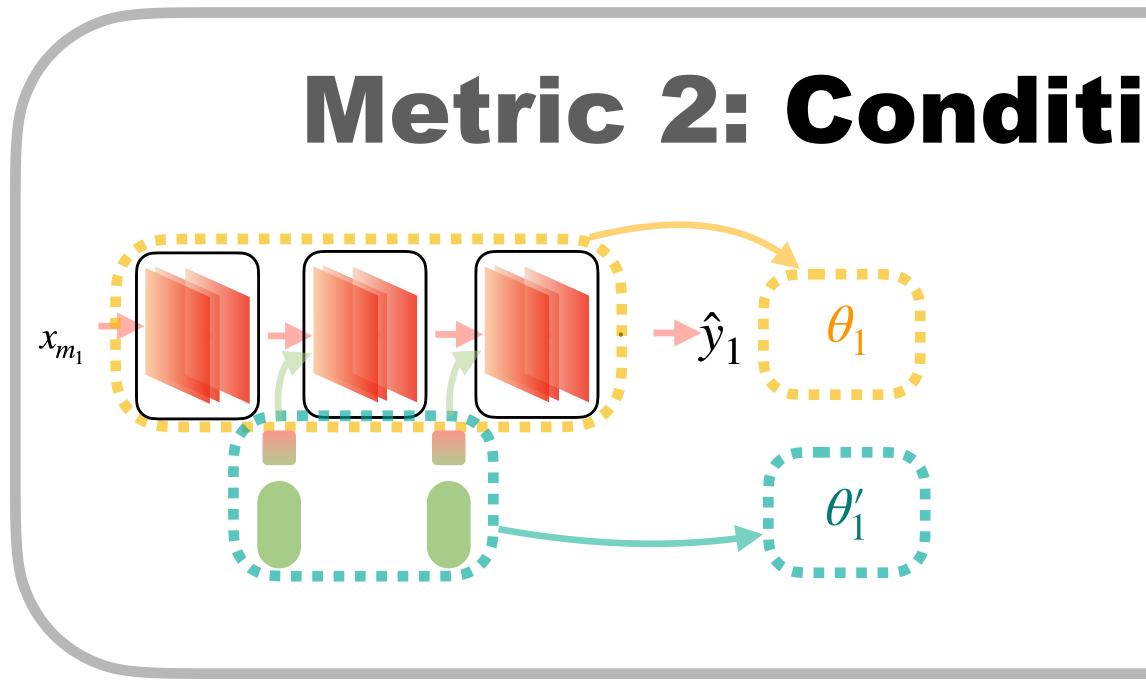
$$A_1|m_0) = rac{A(f_0) - A(f_0')}{A(f_0)},$$

 $A(f_0) = rac{A(f_1) - A(f_1')}{A(f_1)},$

The relative change in accuracy between the two models:

- one using all modalities,
- the other using only one.





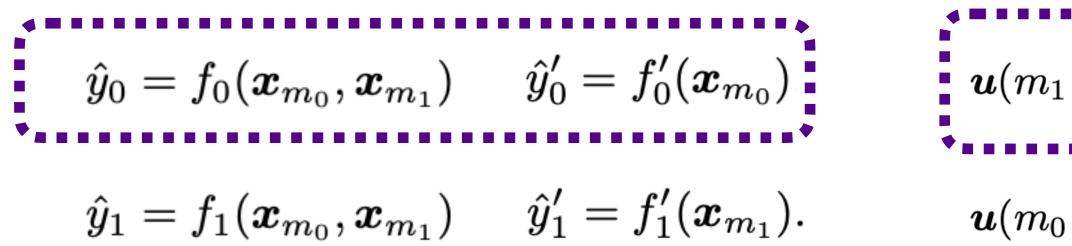
$$A_1|m_0) = rac{A(f_0) - A(f_0')}{A(f_0)},$$

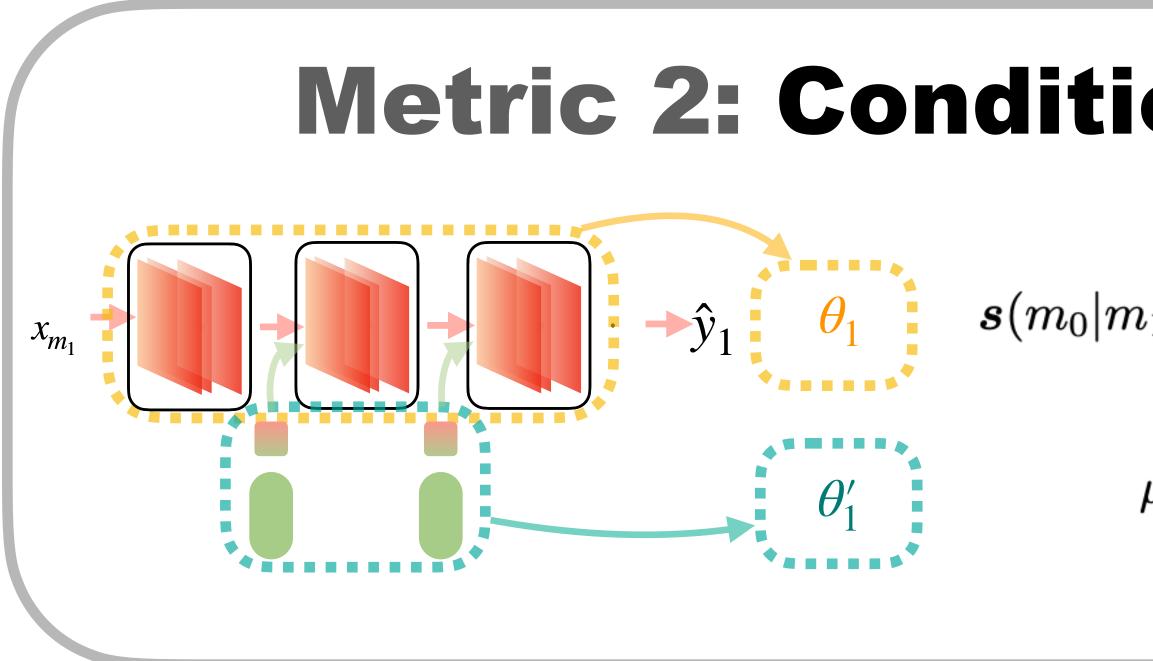
 $A(f_0) = rac{A(f_1) - A(f_1')}{A(f_1)},$

The relative change in accuracy between the two models:

- one using all modalities,
- the other using only one.

Metric 2: Conditional learning speed





$$a_1|m_0) = rac{A(f_0) - A(f_0')}{A(f_0)},$$

 $a_0|m_1) = rac{A(f_1) - A(f_1')}{A(f_1)},$

The relative change in accuracy between the two models:

- one using all modalities,
- the other using only one.

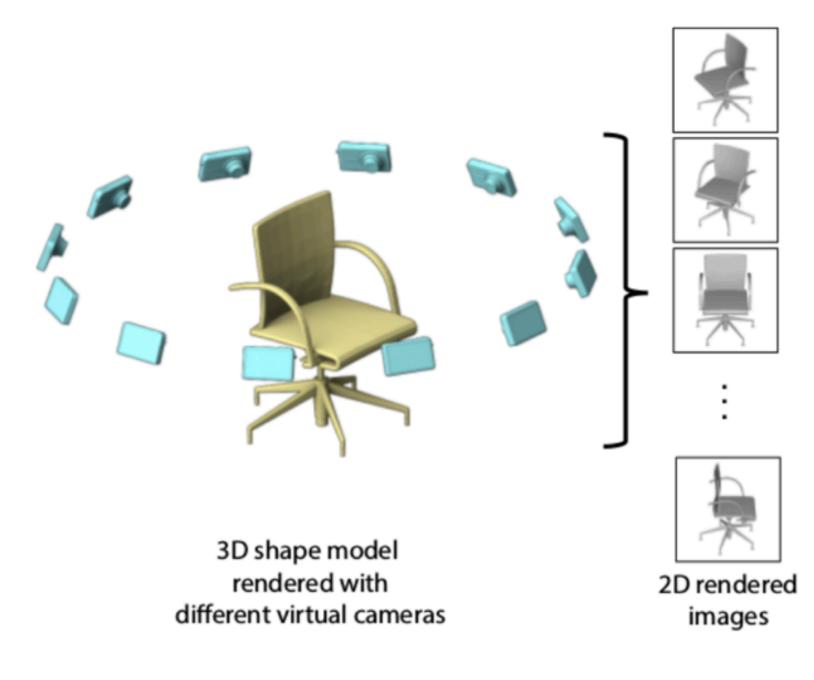
Metric 2: Conditional learning speed

$$\mu_1;t) = \log rac{\sum_{i=1}^t \mu(oldsymbol{ heta}_1';i)}{\sum_{i=1}^t \mu(oldsymbol{ heta}_1;i)},$$

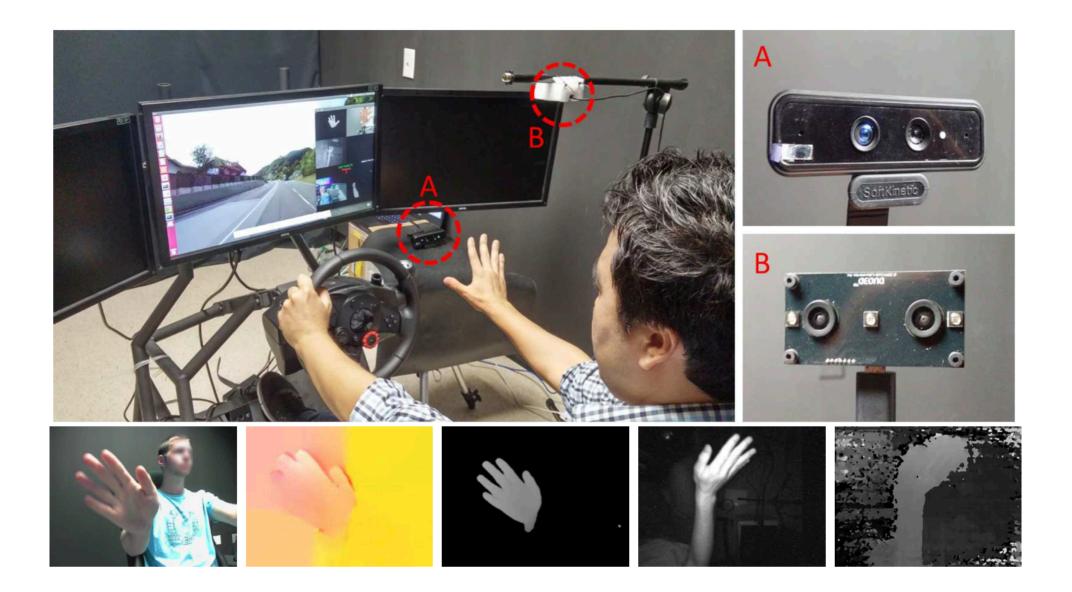
 $\mu({m heta};i) = ||{m G}||_2^2 / ||{m heta}_{(i)}||_2^2$

the log-ratio between the learning speed of

- the uni-modal branch and
- the corresponding fusion components.

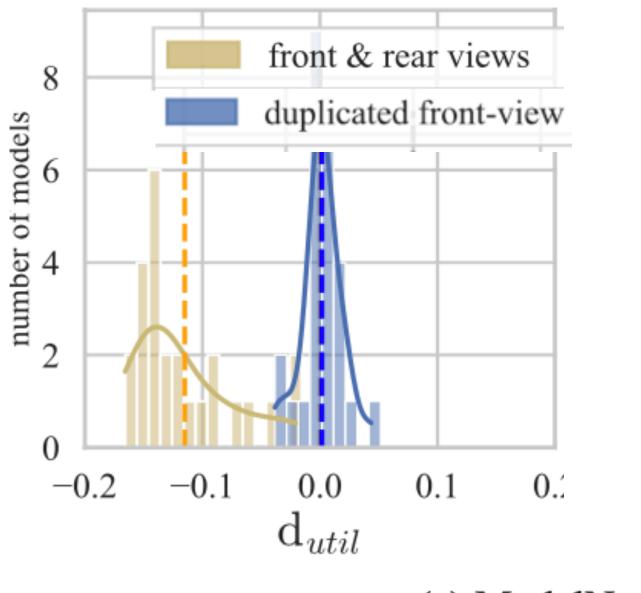


(a) ModelNet40

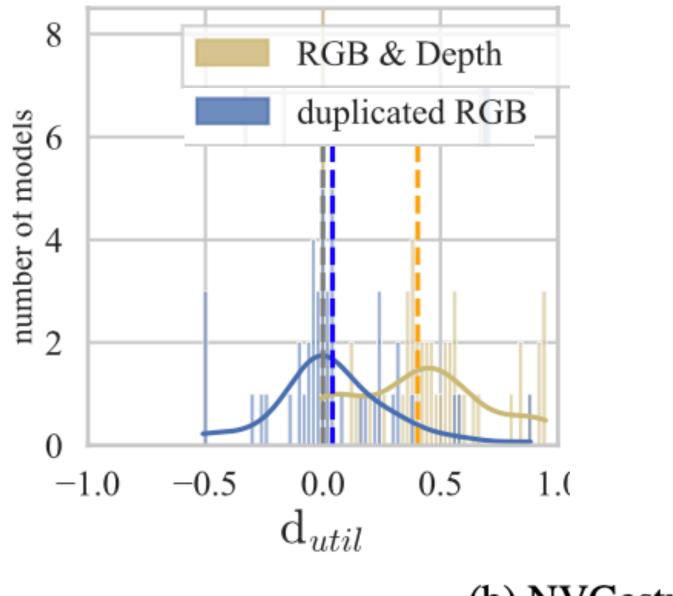


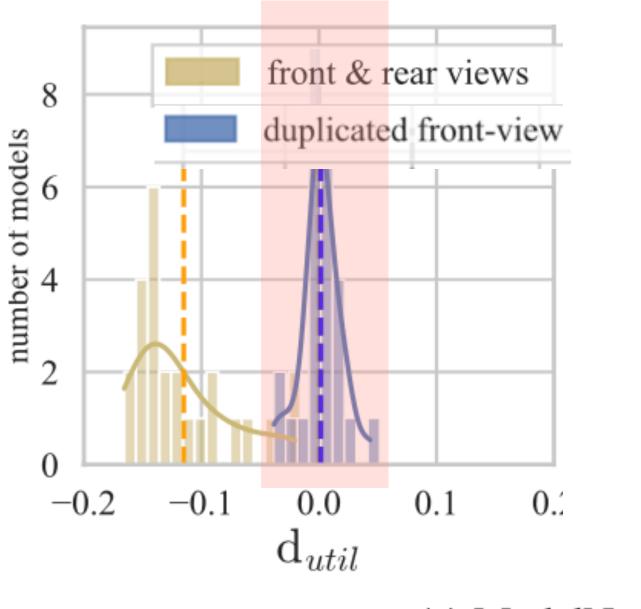
(b) NVGesture

 $d_{util}(f) = u(m_1|m_0) - u(m_0|m_1)$ $d_{speed}(f; t) = s(m_1|m_0; t) - s(m_0|m_1; t)$

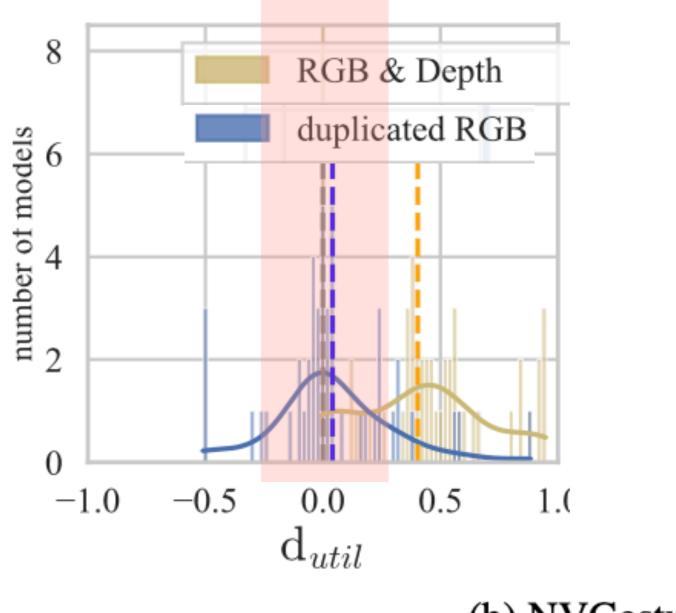


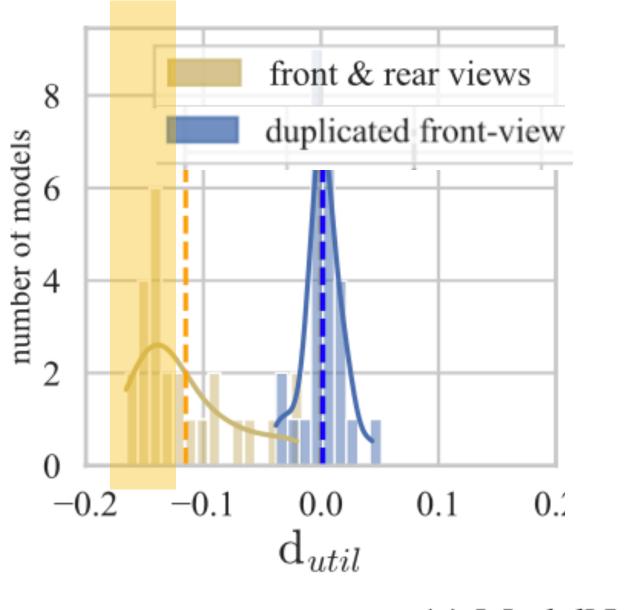
$$egin{aligned} \mathsf{d}_{\mathsf{util}}(f) &= m{u}(m_1 | m_0) - m{u}(m_0 | m_1) \ \mathsf{d}_{\mathsf{speed}}(f;t) &= m{s}(m_1 | m_0;t) - m{s}(m_0 | m_1;t) \end{aligned}$$



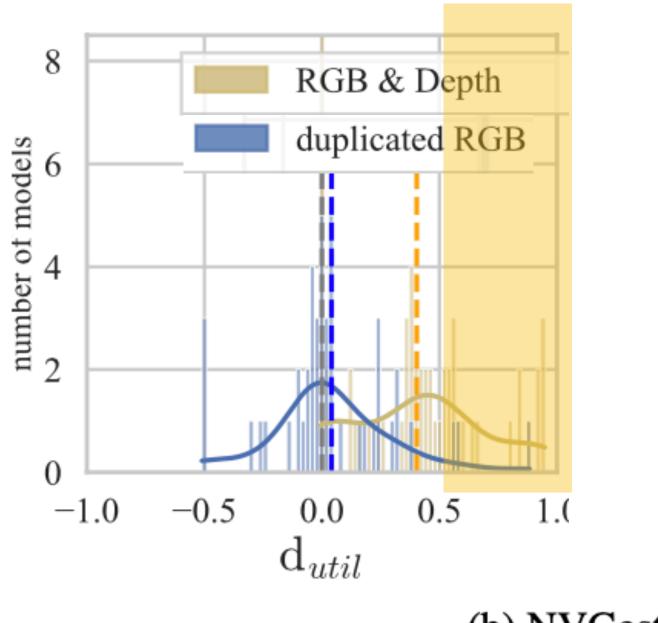


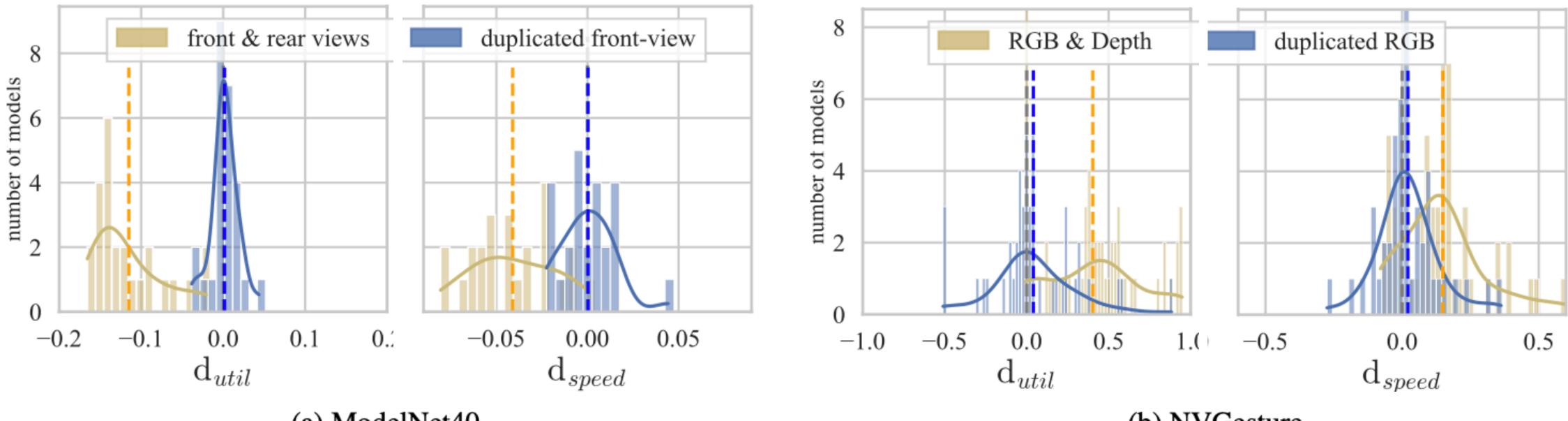
$$egin{aligned} \mathsf{d}_{\mathsf{util}}(f) &= m{u}(m_1|m_0) - m{u}(m_0|m_1) \ \mathsf{d}_{\mathsf{speed}}(f;t) &= m{s}(m_1|m_0;t) - m{s}(m_0|m_1;t) \end{aligned}$$





$$egin{aligned} \mathsf{d}_{\mathsf{util}}(f) &= m{u}(m_1|m_0) - m{u}(m_0|m_1) \ \mathsf{d}_{\mathsf{speed}}(f;t) &= m{s}(m_1|m_0;t) - m{s}(m_0|m_1;t) \end{aligned}$$





(a) ModelNet40

(b) NVGesture

 $d_{util}(f) = u(m_1|m_0) - u(m_0|m_1)$ $d_{speed}(f; t) = s(m_1|m_0; t) - s(m_0|m_1; t)$

Greedy learner hypothesis

A multi-modal learning process is greedy when it produces models that rely on only one of the available modalities.

Greedy learner hypothesis

A multi-modal learning process is greedy when it produces models that rely on only one of the available modalities.

The modality that the multi-modal DNN primarily relies on is the modality that is the fastest to learn from.

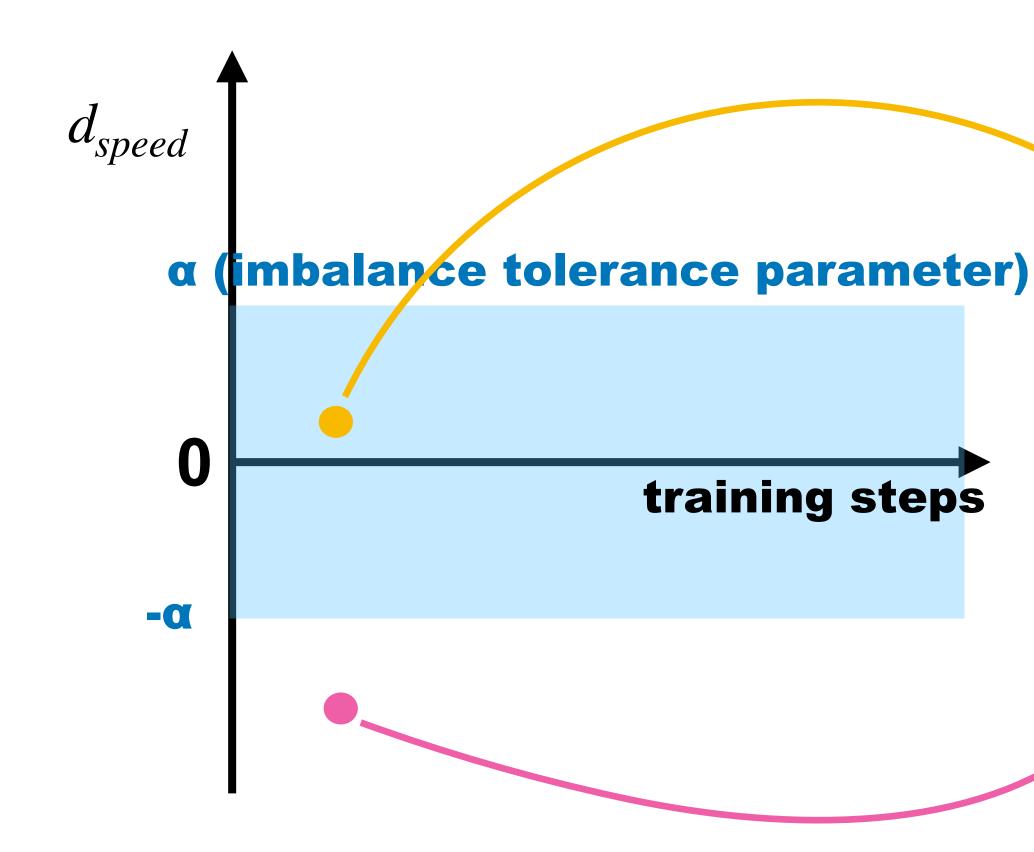
Greedy learner hypothesis

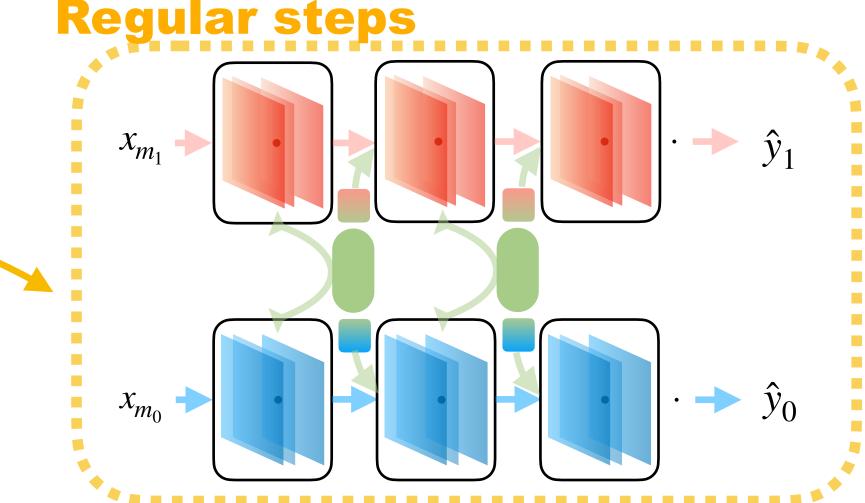
A multi-modal learning process is greedy when it produces models that rely on only one of the available modalities.

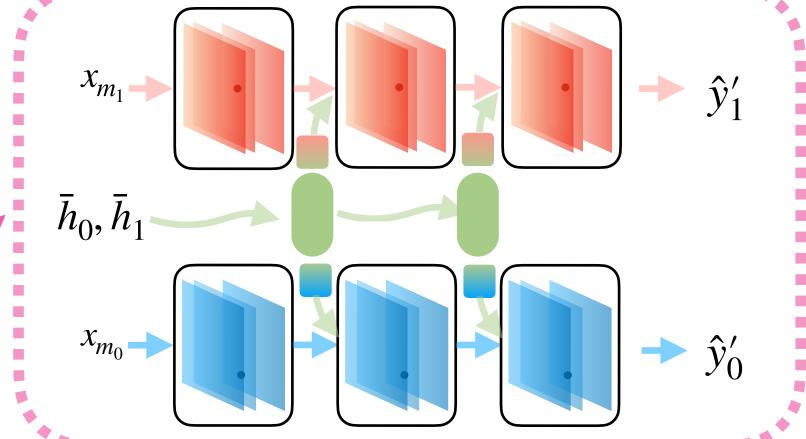
The modality that the multi-modal DNN primarily relies on is the modality that is the fastest to learn from.

We hypothesize that a multi-modal learning process, in which a multi-modal DNN is trained to minimize the sum of the modality-specific losses, is greedy.

Balanced multimodal learning [Guided]



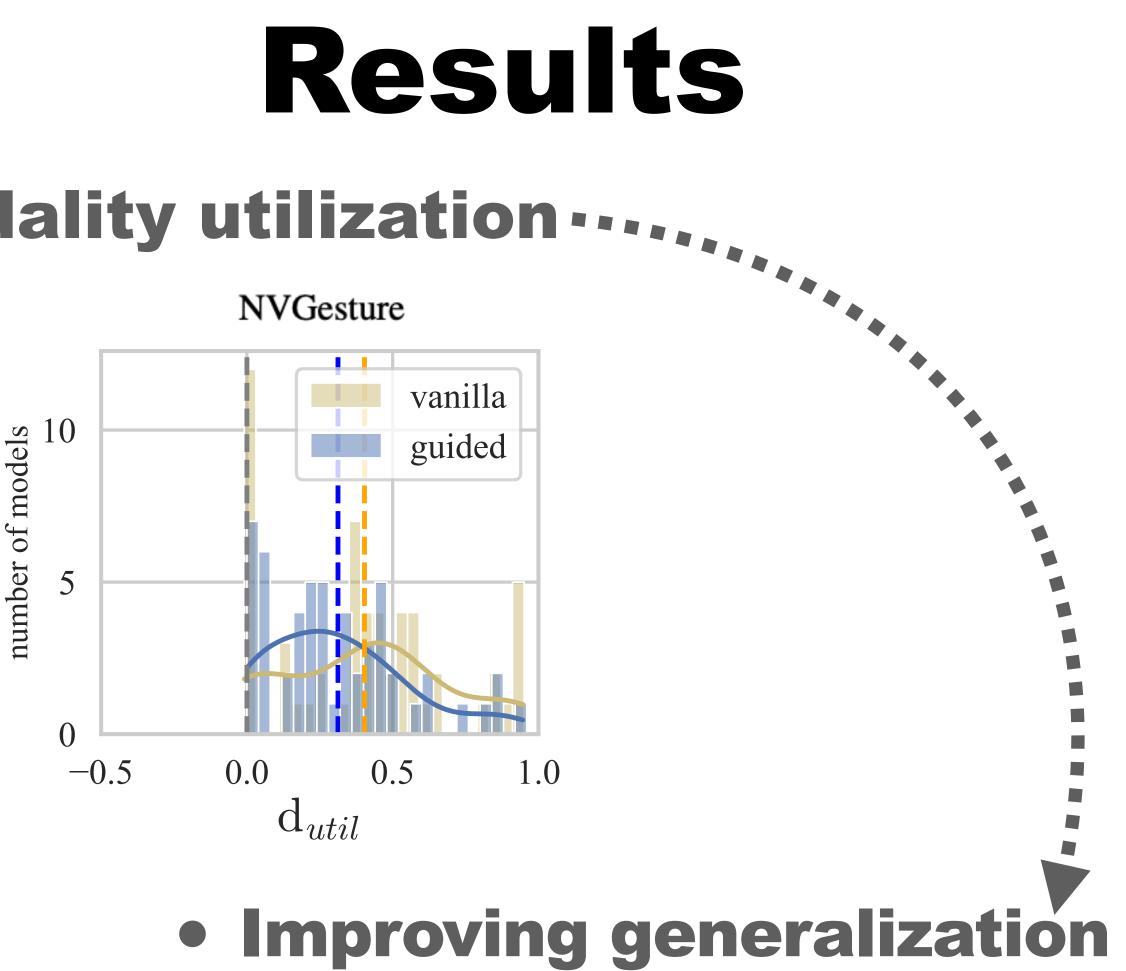




Calibrating modality utilization

vanilla 8 number of models guided 0 0.0 0.2 -0.2 d_{util}

ModelNet40



uni-modal (best

- multi-modal (va
- + RUBi (Cade
- + random (pro
- + guided (prop

	ModelNet40	NVGesture-scratch	NVGesture-pretrained
st)	89.34±0.39	$77.59{\pm}0.55$	$78.98{\pm}2.02$
vanilla)	90.09±0.58	79.81±1.14	83.20±0.21
ene et al., 2019)	$90.45 {\pm} 0.58$	$79.95 {\pm} 0.12$	81.60 ± 1.28
oposed)	91.36±0.10	79.88 ± 0.90	82.64 ± 0.84
posed)	91.37±0.28	80.22±0.73	83.82±1.45

Nan Wu [email: <u>nan.wu@nyu.edu;</u> twitter: Nan Wu @NanWu_]. Stanisław Jastrzębski, Kyunghyun Cho and Krzysztof J. Geras. Characterizing and overcoming the greedy nature of learning in multi-modal deep neural networks. ICML, 2022.

https://github.com/nyukat/greec

e

