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Communication Bottleneck in DDT

Computation gets faster Network bandwidth can't catch up

e Advanced DNN accelerators e Slower-growing bandwidth
o P100->V100->A100 o ~T10x increase

e Advanced DNN compilers
o XLA, TVM, etc.
e The single-GPU iteration time of
ResNet50 has improved by ~22x

Communication becomes the performance bottleneck



System View of Gradient Sparsification (GS)

Top-k gradients for synchronization Save up to 99.9% gradient exchange

e Exact TopK GS e Greatly reduce communication time
e Approximate TopK GS, e.g., DGC

Previous work looked at GS from a theoretical perspective

e They ignore the high cost of sparsification
e GS computation time can exceed communication time
e Leadto limited end-to-end improvements



DRAGONN: encoding

Cheap encoding operations

DGC DRAGONN

Gradients (1] 0[6 5] 7 1] (1 ]o]6][5]7]1]
@ Mask with thr=2
oo 11 ]1]0]
@ Select nonzero indices
Indices [21314] \

@ Costly operations
on GPUs

Values [61517]
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DRAGONN naturally supports massively parallel encoding
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DRAGONN: decoding

Cheap decoding operations

e Index-value pairs are independent of each other
e Near-constant decoding time regardless of the number of GPUs

Decoding Decode n sparse tensors Only decode one ST: sparse tensor
and reduce n dense tensors sparse tensor DT: dense tensor

Previous work : DRAGONN
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DRAGONN: tensor selection

Efficiency-aware tensor selection for GS

e A general cost-benefit analysis based on offline profiling
Toomp(d) < Tiun(d) — Tspr(d)

e Apply DRAGONN to tensors only when it benefits the iteration time
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Summary

e Measurements to understand the real world GS overheads

e DRAGONN is the first work to address this challenge with a
randomized hashing algorithm

e Theoretical analysis on DRAGONN

e [t significantly reduces the encoding and decoding overheads,
while preserving the iteration wise accuracy

Contact: zhuang.wang(@rice.edu
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