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Federated Learning

* A decentralized machine learning paradigm
* Client: Local learning
e Server: Global aggregation
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Example of Federated Learning Application
* Natural Language Processing
* Gboard service by Google ( /I\ ) (D
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System Heterogeneity

* Clients diverge in memory and bandwidths capacities.
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System Heterogeneity

* Traditional FL algorithms require unified model size
for global aggregation:

1
[ E[K]

* One model architecture may not fit all clients.
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Connection Uncertainty

* Network connections are noisy and unstable in real
world.

* Unreliable to transmit large model parameters

Challenges of
Federated Learning



Connection Uncertainty

* Network connections are noisy and unstable in real
world.

* Unreliable to transmit large model parameters

Challenges of * Dropped clients affect the global model quality:
Federated Learning
1%

i€ K]



Paper Outline

Motivation and Key idea

e Learning structurally prunable networks



Key Idea: Learning and Transmitting Structurally Prunable Models

During FL Local Learning:

* A model can by structurally pruned by removing
its tailing channels at each layer

* A pruned sub-model shall be functional without
the need of fine-tuning.

A structurally pruned sub-model



Key Idea: Learning and Transmitting Structurally Prunable Models

During FL Local Learning:

e Without loss of generality, we use a unified pruning
ratio for all layers to prune a model.

* A sub-model is specified with a pruning ratio p
 Which can be treated as a sequence of columns.

A pruned sub-model with
pruning ratiop = 0.5
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Key Idea: Learning and Transmitting Structurally Prunable Models

During FL Communication:

* Model parameters of columns are
transmitted sequentially between the

server and the client.

Global Aggregation

Edge Device

Sequential model transmission.
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Key Idea: Learning and Transmitting Structurally Prunable Models

During FL Communication:

* Model parameters of columns are
transmitted sequentially between the
server and the client.

* The received model parameters
compose a functional sub-model.
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How does our approach benefit Federated Learning?

Support heterogeneous Resilient to connection
model architectures v interruption

Global Aggregation
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Prunable Global Model Sequential Model Transmission
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Paper Outline

Motivation and Key idea

e Learning structurally prunable networks



Proposed Approach:
Self-Distilled Network for Federated Learning

Global Aggregation

Edge Device
Learning
self-distilled network




Proposed Approach:
Self-Distilled Network for Federated Learning

Local Training Objective: A
0" = argmin L(f(X;0),Y)+
E [E(f(X;pr),y)
\_ p~P )

Make sub-model with arbitrary
pruning ratio p predictive

L




Proposed Approach:
Self-Distilled Network for Federated Learning

Local Training Objective: A
0" = argmin L(f(X;0),Y)+
E [L(f(X§9xp)ay)
\_ p~P J

* We need finer-grained guidance to assist sub-model training



Proposed Approach:
Self-Distilled Network for Federated Learning
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Local Training Objective: A
0" = argmin L(f(X;0),)+
E [E(f(x§9xp)ay)+DKL[f(X;9)||f(X§9xp)]]7 (1)
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Effective Optimization via Progressive Learning
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Effective Optimization via Progressive Learning
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2. Progressive parameter update:
for D; ~ P do
9i < V{6, \0xp, 1 (T;0xp,)
HXpi — 0><p¢ — 11 * gi.
end for

J(z;0xp;) = L(f(x;0xp,;),y) + s DxL[f (z; 0) || f (x5 Oxp,;)] 20



Paper Outline

Performance Evaluation

e Robustness
e Communication Efficiency



Performance Under
System Heterogeneity

e Our approach:

heterogeneity (i.e. the cluster setting).

e consistently outperforms baselines under system

* is more advantageous on smaller model size(Wyq »5)

and fewer training data (typical scenario for FL)

Global Model Accuracy (%) Evaluated on CIFAR10, with Stable Network Connections (er = 0).

Trgl:tl;g He tiZ(f;erIllei ty E\ﬁlou;;e d FedAvg FedHetero FjORD FedSlim FedResCuE
P, = {1.0} (uniform) wy1 81.06£0.63 - 80.57+0.91 81.14+0.76 81.39+0.20

100% L Wyo.25 18.57£0.64 - 69.94+0.65 70.47+0.61 71.19+0.19
° Wy - 76.80+£0.53 75.71+£0.47 77.4910.40 78.22+0.41

|P,| = 4 (cluster)  wxoq.25 - 68.561+0.51 70.98+0.75 73.22+0.34 73.251+0.47

P. = {1.0} (uniform) wyx1 68.03£0.50 - 67.891+1.47 67.9610.72 71.27+0.27

20% c Wyo05 1647+£2.24 - 61.38+1.69 59.56+1.39 61.12+1.35

° IP,| = 4 (cluster) Wx1 - 59.38+0.41 62.43+1.65 59.53+0.86 64.531+1.06

e Wy 0.25 - 55.41+0.39 61.86+1.21 58.31+£0.23 61.98+0.85

22



Global Model Evaluated Accuracy

Performance Under
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e Our approach is more resilient to transmission package 0.2 vt
loss compared with other approaches that are compatible il ]
with system heterogeneity. o 25 5'°Epoz'ﬁx216° 125 150

Learning curves evaluated on the X1.0 model.

Global Model Accuracy (%) Evaluated on CIFAR10 Under Connection Loss (er > 0).

System Heterogeneity Evaluated Model FedAvg FedHetero FjORD FedSlim FedResCuE
P, = {1.0} (uniform) wy1 50.36%2.17 - 61.79+£1.62 57.31£1.27 70.02+0.40
¢ ' Wyo.25 12.5840.51 - 60.20+£1.67 55.33+0.89 67.40+0.84
IP,| = 4 (cluster) W1 - 60.92+1.33 64.52+0.60 62.35+1.76 69.78+0.74

© Wx0.25 - 59.70+£0.64 64.11+£041 61.77£1.62 68.83+1.00

Performance under unstable network connections, given 100% of training data, and 0.1 < er < 0.2
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Communication Efficiency

e Our approach requires fewer communication rounds to reach pre-defined performance.

Communication Efficiency on CIFAR10 dataset.
Acc Model  FedHetero FjORD  FedSlim FedResCuE
Size
100 % training data, 0.1 < er < 0.2.
60% wxos 256.7 218.0 253.3 124.7

20 % training data, er = 0
55% wxo.5 180.7 156.0 192.0 96.0

Table 6: FedResCuE requires notably fewer communica-
tion rounds to reach the predefined accuracy (Acc).
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Contribution Overview

[ FedResCue ] Global Aggregation
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