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Federated Learning

• A decentralized machine learning paradigm 
• Client: Local learning 
• Server: Global aggregation
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Example of Federated Learning Application

• Natural Language Processing
• Gboard service by Google

Source: Google AI blog
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Challenges of
Federated Learning

System Heterogeneity
• Clients diverge in memory and bandwidths capacities.

Server
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Challenges of
Federated Learning

System Heterogeneity
• Traditional FL algorithms require unified model size

for global aggregation: 

• One model architecture may not fit all clients.
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Challenges of
Federated Learning

Connection Uncertainty
• Network connections are noisy and unstable in real

world.

• Unreliable to transmit large model parameters
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Challenges of
Federated Learning

Connection Uncertainty
• Network connections are noisy and unstable in real

world.

• Unreliable to transmit large model parameters

• Dropped clients affect the global model quality:
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Paper Outline Background and Challenges in Federated Learning
• System Heterogeneity
• Unstable connection

Motivation and Key idea
• Learning structurally prunable networks

Methodology
• Self-distilled network via progressive learning

Performance Evaluation
• Robustness
• Communication Efficiency
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Key Idea: Learning and Transmitting Structurally Prunable Models

During FL Local Learning:
• A model can by structurally pruned by removing

its tailing channels at each layer
• A pruned sub-model shall be functional without

the need of fine-tuning.

A structurally pruned sub-model
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Key Idea: Learning and Transmitting Structurally Prunable Models

During FL Local Learning:
• Without loss of generality, we use a unified pruning

ratio for all layers to prune a model.
• A sub-model is specified with a pruning ratio 𝑝
• Which can be treated as a sequence of columns.

A pruned sub-model with
pruning ratio 𝑝 = 0.5
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During FL Communication:
• Model parameters of columns are

transmitted sequentially between the
server and the client.

Sequential model transmission.
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Key Idea: Learning and Transmitting Structurally Prunable Models
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During FL Communication:
• Model parameters of columns are

transmitted sequentially between the
server and the client.

• The received model parameters
compose a functional sub-model.

Key Idea: Learning and Transmitting Structurally Prunable Models
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How does our approach benefit Federated Learning?

Sequential Model Transmission
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Resilient to connection
interruption

Support heterogeneous
model architectures

Prunable Global Model
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Proposed Approach:
Self-Distilled Network for Federated Learning
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Proposed Approach:
Self-Distilled Network for Federated Learning

Local Training Objective:

Make sub-model with arbitrary
pruning ratio 𝑝 predictive

161 = 𝑝' > 𝑝( > 𝑝) > 0
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Proposed Approach:
Self-Distilled Network for Federated Learning

• We need finer-grained guidance to assist sub-model training

Local Training Objective:
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Proposed Approach:
Self-Distilled Network for Federated Learning

𝜃

𝜃×+

𝑓 𝑥, 𝜃

𝑓(𝑥, 𝜃×")

Teacher prediction

Student prediction hard labels y

Soft labels

[0, 𝟏, 0, 0]

Local Training Objective:
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Effective Optimization via Progressive Learning

1. Sample ordered pruning ratios:
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Effective Optimization via Progressive Learning

1. Sample ordered pruning ratios:

2. Progressive parameter update:

𝜃×+! 𝜃×,$𝜃×+# ……
(𝑃 = 𝑝# 𝑝# ∈ 𝑃, 𝑝# < 𝑝#$% ∀𝑖 < 𝑆, 𝑝& = 1.0 #'%

&

Progressively update selected parameters
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Performance Under 
System Heterogeneity

• Our approach:
• consistently outperforms baselines under system 

heterogeneity (i.e. the cluster setting).
• is more advantageous on smaller model size(𝐰×(.*+)

and fewer training data (typical scenario for FL)
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Performance Under 
Unstable Connections

• Our approach is more resilient to transmission package 
loss compared with other approaches that are compatible 
with system heterogeneity.

Performance under unstable network connections, given 100% of training data, and 0.1 ≤ 𝑒𝑟 ≤ 0.2

Learning curves evaluated on the ×1.0 model.
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Communication Efficiency

• Our approach requires fewer communication rounds  to reach pre-defined performance.
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Contribution Overview
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