

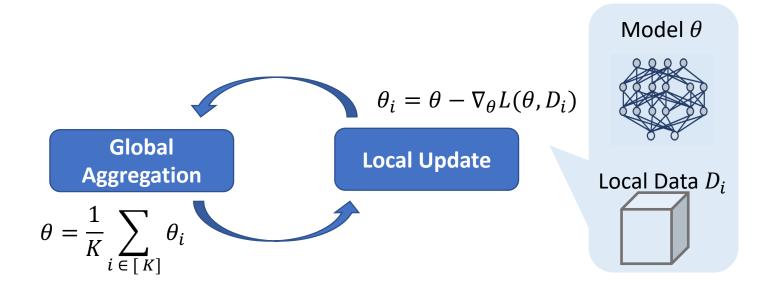
FedResCue:

Resilient and **C**omm**u**nication-**E**fficient Learning for Heterogeneous **Fed**erated Systems

Zhuangdi Zhu, Junyuan Hong, Steve Drew, and Jiayu Zhou **Proceedings of the 39**th International Conference on Machine Learning, 2022

Federated Learning

- A decentralized machine learning paradigm
 - Client: Local learning
 - Server: Global aggregation



Example of Federated Learning Application

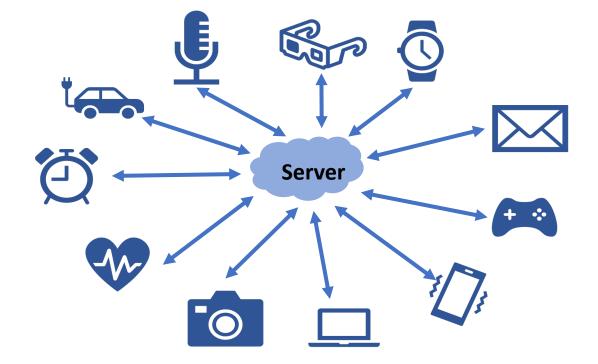
 Natural Language Processing • *Gboard* service by Google > This party is lit Vо SMS Ļ and > up $w^{2} e^{3} r^{4} t^{5} y^{6} u^{7} i^{8} 0^{9}$ q¹. р

Source: Google AI blog

System Heterogeneity

• Clients diverge in *memory* and *bandwidths* capacities.

Challenges of Federated Learning



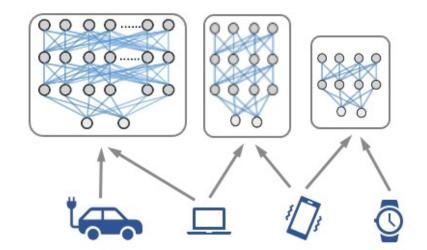
System Heterogeneity

• Traditional FL algorithms require unified model size for global aggregation:

$$\theta = \frac{1}{K} \sum_{i \in [K]} \theta_i$$

• One model architecture may not fit all clients.

Challenges of Federated Learning



Connection Uncertainty

Network connections are noisy and *unstable* in real world.

Challenges of Federated Learning

• Unreliable to transmit large model parameters

Connection Uncertainty

Network connections are noisy and *unstable* in real world.

- Unreliable to transmit large model parameters
- Dropped clients affect the global model quality:

$$\theta = \frac{1}{K} \sum_{i \in [K]} \theta_i$$

Challenges of Federated Learning

Paper Outline

Background and Challenges in Federated Learning

- System Heterogeneity
- Unstable connection

Motivation and Key idea

• Learning structurally prunable networks

Methodology

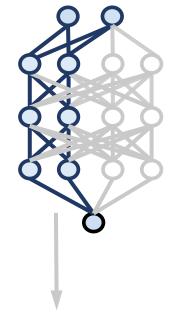
Self-distilled network via progressive learning

Performance Evaluation

- Robustness
- Communication Efficiency

During FL Local Learning:

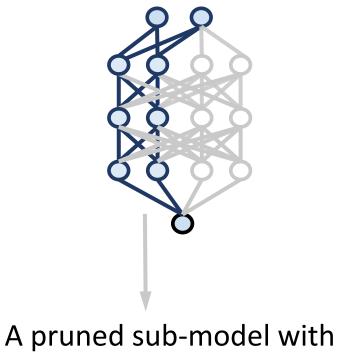
- A model can by *structurally pruned* by removing its tailing channels at each layer
- A pruned sub-model shall be functional without the need of fine-tuning.



A structurally pruned sub-model

During FL Local Learning:

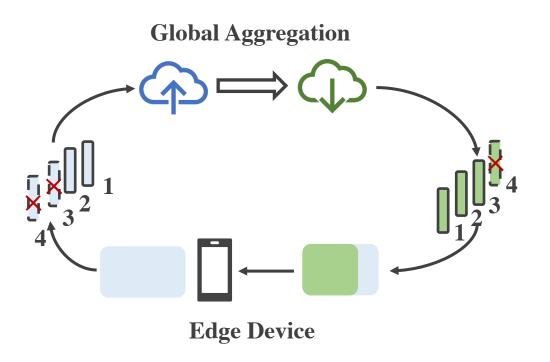
- Without loss of generality, we use a unified pruning ratio for all layers to prune a model.
- ${\ensuremath{\bullet}}$ A sub-model is specified with a pruning ratio p
 - Which can be treated as a sequence of *columns.*



pruning ratio p = 0.5

During FL Communication:

 Model parameters of columns are transmitted *sequentially* between the server and the client.

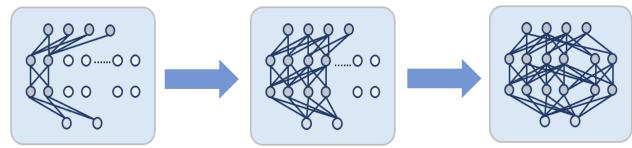


Sequential model transmission.

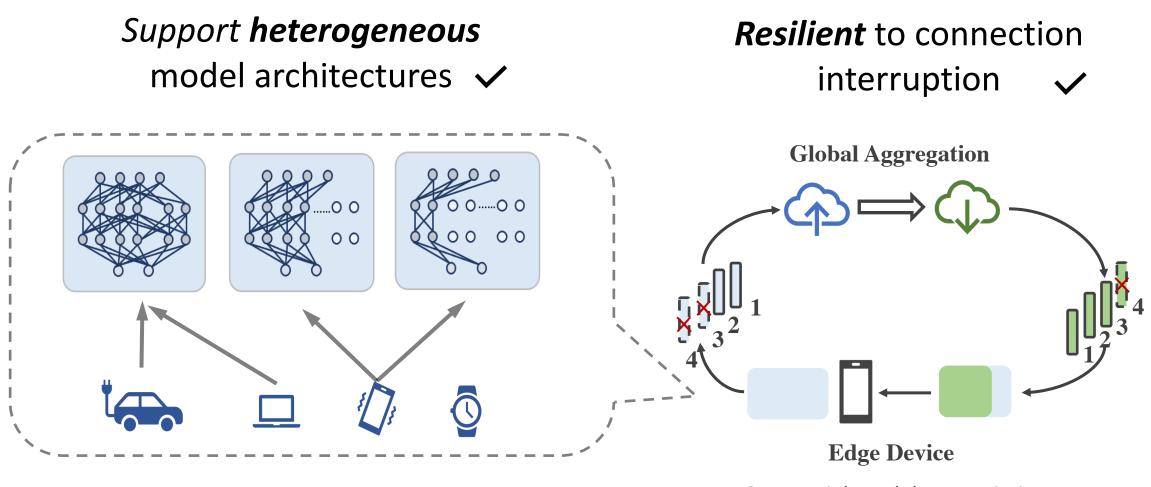
During FL Communication:

 Model parameters of columns are transmitted *sequentially* between the server and the client.

• The received model parameters compose a functional sub-model.



How does our approach benefit Federated Learning?



Prunable Global Model

Sequential Model Transmission

Paper Outline

Background and Challenges in Federated Learning

- System Heterogeneity
- Unstable connection

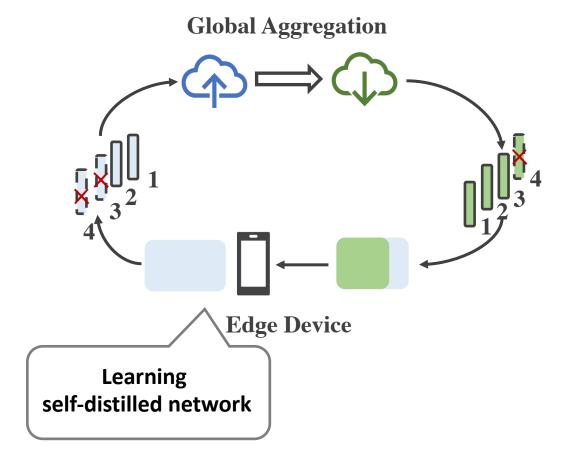
Motivation and Key idea

• Learning structurally prunable networks

Methodology

Self-distilled network via progressive learning

Performance Evaluation

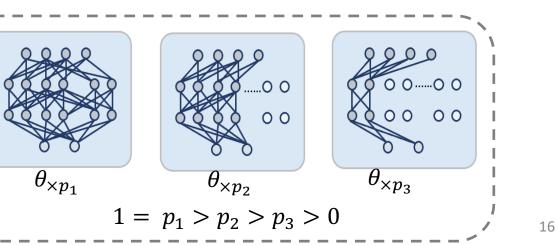


Local Training Objective:

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}\in\Theta} \mathcal{L}(f(\mathcal{X};\boldsymbol{\theta}),\mathcal{Y}) +$$

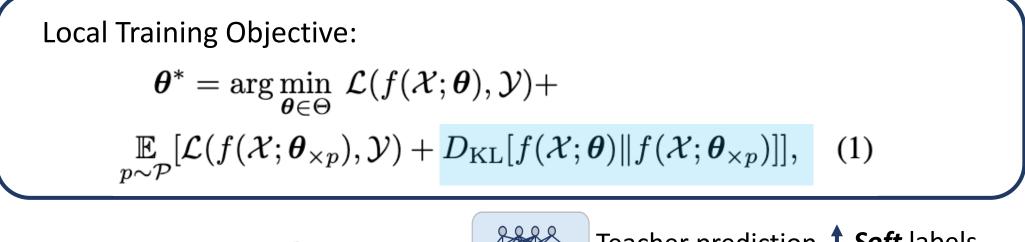
 $\mathop{\mathbb{E}}_{p\sim\mathcal{P}}[\mathcal{L}(f(\mathcal{X};\boldsymbol{\theta}_{\times p}),\mathcal{Y})$

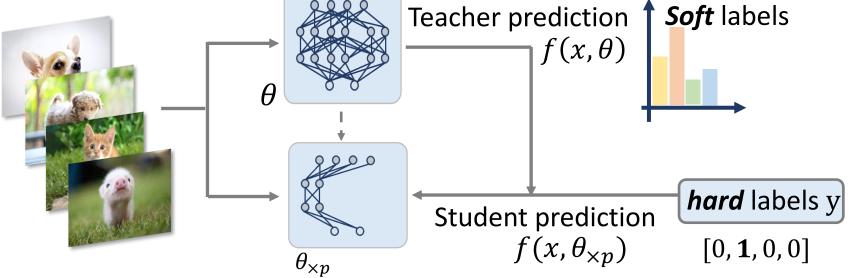
Make sub-model with arbitrary pruning ratio p predictive $\theta_{\times p_1} = p_1 > p_2 > p_3$



```
Local Training Objective:
```

• We need finer-grained guidance to assist sub-model training

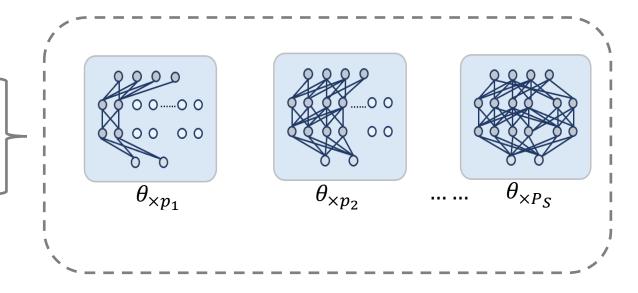




18

Effective Optimization via *Progressive Learning*

1. Sample ordered pruning ratios: $\hat{P} = [p_i | p_i \in P, p_i < p_{i+1} \forall i < S, p_S = 1.0]_{i=1}^S$



Effective Optimization via *Progressive Learning*

1. Sample ordered pruning ratios: $\hat{P} = [n_i | n_i \in P, n_i < n_i] \forall i < S, n_i = 1, 0]^S$

$$\hat{p} = [p_i | p_i \in P, p_i < p_{i+1} \ \forall i < S, p_S = 1.0]_{i=1}^S$$

2. Progressive parameter update: for $p_i \sim \hat{P}$ do $g_i \leftarrow \nabla_{\{\theta_{\times p_i} \setminus \theta_{\times p_{i-1}}\}} J(x; \theta_{\times p_i})$ $\theta_{\times p_i} \leftarrow \theta_{\times p_i} - \eta * g_i.$ end for

$$J(x; \boldsymbol{\theta}_{\times p_i}) = \mathcal{L}(f(x; \boldsymbol{\theta}_{\times p_i}), y) + \alpha_i D_{\mathrm{KL}}[f(x; \bar{\boldsymbol{\theta}}) \| f(x; \boldsymbol{\theta}_{\times p_i})]$$

Paper Outline

Background and Challenges in Federated Learning

- System Heterogeneity
- Unstable connection

Motivation and Key idea

• Learning structurally prunable networks

Methodology

Self-distilled network via progressive learning

Performance Evaluation

- Robustness
- Communication Efficiency

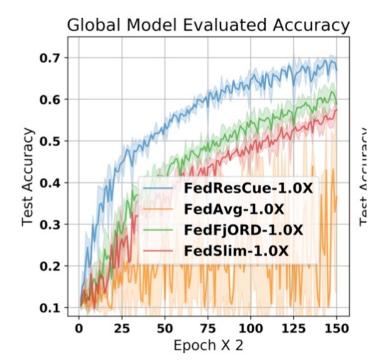
Performance Under System Heterogeneity

- Our approach:
- consistently outperforms baselines under system heterogeneity (i.e. the cluster setting).
- is more advantageous on smaller model size($w_{\times 0.25})$ and fewer training data (typical scenario for FL)

	Global Model Accuracy (%) Evaluated on CIFAR10, with Stable Network Connections ($er = 0$).							
Training	System	Evaluated	FedAvg	FedHetero	FjORD	FedSlim	FedResCuE	
Data	Heterogeneity	Model	Teunvg	reallelelo	FJORD	Teusiim	reakesCuL	
100%	$P_c = \{1.0\}$ (uniform)	$oldsymbol{w}_{ imes 1}$	$81.06 {\pm} 0.63$	-	$80.57 {\pm} 0.91$	$81.14 {\pm} 0.76$	81.39±0.20	
		$m{w}_{ imes 0.25}$	$18.57 {\pm} 0.64$	-	$69.94 {\pm} 0.65$	$70.47 {\pm} 0.61$	71.19±0.19	
		$oldsymbol{w}_{ imes 1}$	-	$76.80 {\pm} 0.53$	75.71 ± 0.47	77.49 ± 0.40	78.22±0.41	
	$ P_c = 4$ (cluster)	$m{w}_{ imes 0.25}$	-	$68.56{\pm}0.51$	$70.98{\pm}0.75$	73.22 ± 0.34	73.25±0.47	
20%	$P_c = \{1.0\}$ (uniform)	$oldsymbol{w}_{ imes 1}$	$68.03{\pm}0.50$	-	$67.89{\pm}1.47$	$67.96 {\pm} 0.72$	71.27±0.27	
		$m{w}_{ imes 0.25}$	$16.47 {\pm} 2.24$	-	61.38±1.69	59.56 ± 1.39	61.12 ± 1.35	
	$ P_c = 4$ (cluster)	$oldsymbol{w}_{ imes 1}$	-	59.38±0.41	62.43±1.65	59.53±0.86	64.53±1.06	
		$m{w}_{ imes 0.25}$	-	55.41±0.39	61.86±1.21	58.31±0.23	61.98±0.85	

Performance Under Unstable Connections

• Our approach is more resilient to transmission package loss compared with other approaches that are compatible with system heterogeneity.



Learning curves evaluated on the $\times 1.0$ model.

Global Model Accuracy (%) Evaluated on CIFAR10 Under Connection Loss ($er > 0$).								
System Heterogeneity	Evaluated Model	FedAvg	FedHetero	FjORD	FedSlim	FedResCuE		
$P_c = \{1.0\}$ (uniform)	$oldsymbol{w}_{ imes 1}$	$50.36 {\pm} 2.17$	-	61.79 ± 1.62	57.31±1.27	70.02±0.40		
$T_c = \{1.0\}$ (unitofili)	$oldsymbol{w}_{ imes 0.25}$	$12.58{\pm}0.51$	-	$60.20{\pm}1.67$	$55.33 {\pm} 0.89$	$67.40{\pm}0.84$		
$ P_c = 4$ (cluster)	$oldsymbol{w}_{ imes 1}$	-	60.92 ± 1.33	$64.52 {\pm} 0.60$	62.35 ± 1.76	69.78±0.74		
$ I_c = 4$ (cluster)	$oldsymbol{w}_{ imes 0.25}$	-	59.70±0.64	64.11±0.41	61.77 ± 1.62	68.83±1.00		

Performance under unstable network connections, given 100% of training data, and $0.1 \le er \le 0.2$

Communication Efficiency

• Our approach requires fewer communication rounds to reach pre-defined performance.

Communication Efficiency on CIFAR10 dataset.								
Acc	Model	FedHete	ro FjORD	FedSlim	FedResCuE			
	Size							
	100% training data, $0.1 \le er \le 0.2$.							
60%	$m{w}_{ imes 0.5}$	256.7	218.0	253.3	124.7			
20% training data, $er=0$								
55%	$oldsymbol{w}_{ imes 0.5}$	180.7	156.0	192.0	96.0			

Table 6: *FedResCuE* requires notably fewer communication rounds to reach the predefined accuracy (Acc).

Contribution Overview

