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Motivation: Curse of Dimensionality (CoD)

e E.g., dim(degree r polynomials in d variables) ~ d’,

e Quickly become infeasible when d is large in practice (e.g., d ~ 10° for ImageNet )

e Require a huge number samples to learn!

e Indicate “Poor” scaling law: loss ~ m ™, with a being tiny (e.g. & ~ 1/d)



Neural Networks Can Overcome the CoD. Why?
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Methodologies

* Consider the Triple (D, M, 1) as an D: Data
integrated system

» Study basic symmetries associated to
this system (algorithmic symmetry)

» Examine relation between symmetry
and performance



Algorithmic Symmetry

* Algorithmic Symmaetry : invariance of the learning procedures to certain group
transformation of the data, namely, changing the coordinate system of the data.

* Functional Symmetry C Algorithmic Symmetry

« Example: Kernel regression with an inner product kernel is algorithmic but not
functionally invariant to rotation because for any rotation 7 and all inputs x, x’

K(tx,tx') = K(x,x") but K(x,7x") # K(x,x')



Better Architectures Break Spurious Symmetries
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Data Improves Data Efficiency (

* With more data, models can overcome
spurious symmetries, improving scaling
law
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Data Improves Data Efficiency (

» Larger models (ResNets, EfficientNets) exhibit even more impressive power
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Other Contributions

* Performance is degraded in the same way when applying spurious
symmetries to the model or the data.

* Spurious symmetries eliminate the benefits of SGD

* Finite-width VEC breaks some spurious symmetries from infinite-width
networks, leading to better performance.



Conclusion

To understand deep learning, we need to understand the interactions between
(Data, Model, )



