Synergy and Symmetry in Deep Learning:

Interactions between the Data, Model, and Inference Algorithm

Lechao Xiao & Jeffrey Pennington Google Research, Brain Team

Motivation: Curse of Dimensionality (CoD)

• E.g., $dim(degree r polynomials in d variables) ~ <math>d^r$,

• Quickly become infeasible when d is large in practice (e.g., $d\sim 10^5$ for ImageNet)

Require a huge number samples to learn!

• Indicate "Poor" scaling law: loss $\sim m^{-\alpha}$, with α being tiny (e.g. $\alpha \sim 1/d$)

Neural Networks Can Overcome the CoD. Why?

- Good scaling law observed in practice (Blue Curve) rather than
- poor scaling law indicated by theory (Orange Curve)

ImageNet Scaling Plot (ResNet50)

Methodologies

• Consider the Triple (D, M, I) as an integrated system

• Study basic symmetries associated to this system (algorithmic symmetry)

• Examine relation between symmetry and performance

Algorithmic Symmetry

• Algorithmic Symmetry: invariance of *the learning procedures* to certain group transformation of the data, namely, changing the coordinate system of the data.

• Functional Symmetry

Algorithmic Symmetry

• **Example**: Kernel regression with an inner product kernel is algorithmic but **not** functionally invariant to rotation because for any rotation τ and all inputs x, x'

$$K(\tau x, \tau x') = K(x, x')$$
 but $K(x, \tau x') \neq K(x, x')$

Better Architectures Break Spurious Symmetries

- Identify basic symmetries associated to
 - 1. Baseline: Fully-connected networks (FCN)
 - 2. +Locality: Locally-connected Networks (LCN)
 - 3. +Weight-sharing: Convolutional networks with a vectorization readout layer (VEC)
 - 4. +Translation-invariance: Convolutional networks with a global average pooling (GAP)
- Better architectures break spurious symmetries and lead to better performance.

Data Improves Data Efficiency (DIDE)

 With more data, models can overcome spurious symmetries, improving scaling law

Change of Scaling

Data Improves Data Efficiency (DIDE)

• Larger models (ResNets, EfficientNets) exhibit even more impressive power

Other Contributions

• Performance is degraded in the same way when applying spurious symmetries to the **model** or the **data**.

• Spurious symmetries eliminate the benefits of SGD

• Finite-width VEC breaks some spurious symmetries from infinite-width networks, leading to better performance.

Conclusion

To understand deep learning, we need to understand the interactions between

(Data, Model, Inference algorithm)