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o (Approximately) sample from a probability distribution with density 7
(Vx €RY) m(x) = e~V / / e~V dy oc U0,
Rd

where the potential U: RY — R U {400} is measurable and
0< fdomUe_U(y) dy < +o0

e Usually, the number of dimensions d > 1
e Possibly nonsmooth composite potential U

(Vx € Rd) U(x) = f(x) + g(x)

e f is continuously differentiable but possibly not globally Lipschitz smooth
(i.e., do not admit a globally Lipschitz gradient)
e g is possibly nonsmooth

e f and g are both convex, proper and lower semicontinuous 71



Langevin Monte Carlo Algorithms

e The Langevin Monte Carlo (LMC) algorithm (see e.g., Dalalyan, 2017) is
arguably the most widely-studied gradient-based MCMC algorithm, which
takes the form

(Vk € N)  xkq1 = xk —YVU(xk) + /27 &k,

where &, . N4(0,/) forall k € Nand v € ]0,1] is a step size
e Possibly with varying step sizes, the LMC algorithm is also referred to as the
unadjusted Langevin algorithm (ULA; Durmus and Moulines, 2017)

e Applying a Metropolis—Hastings correction step at each iteration of ULA, the
algorithm is often referred to as the Metropolis-adjusted Langevin algorithm
(MALA,; Roberts and Tweedie, 1996).
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Mirror-Langevin Algorithm

e Mirror-Langevin Algorithm (MLA; Hsieh et al., 2018; Zhang et al., 2020; Ahn
and Chewi, 2021; Li et al., 2022, cf. mirror descent):

(Vk €N) X1 = Vo' (Violxe) =V U(xe) + V27 [V2(x0)] "k )

e is aLegendre function

o E.g., Hyperbolic entropy (hypent) which interpolates between the squared
Euclidean distance and the Boltzmann—Shannon entropy as j varies:

d

pp(x) = Z[Xi arsinh(?) — m}

i=1 !

Vs(x) = (arsinh (;) > 1<i<d

VQPE(X) = (/Bl Sinh(Xi))lgigd 3/Mm



Bregman—Moreau Envelopes

e Smooth envelopes of the nonsmooth part g of the potential U

e Extending Moreau envelopes with Bregman divergences instead of squared
Euclidean distances, the (left and right) Bregman—Moreau envelopes are

vy 00 = inf {80 + 10u0)}

yeRd
_ 1
it} 00 = inf, {e(v) + 1 Duteor)

where Dy (x, y) is the Bregman divergence between x and y associated with a
Legendre function vy and A > 0
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Bregman—Moreau Envelopes

e Extending Moreau proximity operators with Bregman divergences, the (left
and right) Bregman proximity operators are

%%g(X) = argmin {g(y) + iqu(y,X)},

y€Rd

- . 1

P\, (x) := argmin {g(y) + ADw(X,y)}
yEeRd

o énvy , and enty , are differentiable
o Gradients of (left and right) Bregman—Moreau envelopes

V&Y 4(x) = 7v2¢(x (= Pe)
vty () = 5 (Vi) — Ve (Bl ()
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Bregman Proximal LMC Algorithms

e Instead of directly sampling from 7, we propose to sample from
distributions whose potentials being smooth surrogates of U, defined by

— —
Uy =f+évy, and U :=f+eénty,

e 1 is a Legendre function possibly different from the Legendre function ¢ in
MLA to allow full flexibility
e The corresponding surrogate target densities are

?/\w o exp(—v\w) and 7;# o exp(—ﬁ/\w)
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The Bregman—Moreau Unadjusted Mirror-Langevin Algorithm

e The Bregman-Moreau unadjusted mirror-Langevin algorithm (BMUMLA)
iterates, for k € N,

X1 = V" (V0 = 7V UL (00 + V21 [Pol)] ).

e When ¢ = ¢ = ||-|?/2, then BMUMLA reduces to MYULA (Durmus et al.,
2018)

e Sampling analogue of the Bregman proximal gradient algorithm via right
BMUMLA with p =
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Numerical Experiments

e Nonsmooth sampling (anisotropic Laplace distribution):

d
f=0 and g(x)=|aox|;= Za;\x,-\ with a=(1,2,...,d)"
i=1

e MYULA is known to perform poorly due to the anisotropy: with a relatively
small step size, MYULA mixes fast for the narrow marginals, whereas it
mixes slowly in the wide ones

8/1



MYULA vs BMUMLA
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The End
Thank you!
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