Distinguishing rule- and exemplar-based generalization in learning systems

Ishita Dasgupta

Erin Grant

Tom Griffiths

^{*}Equal contribution.

 $^{\widehat{a}}$ Now at DeepMind.

This work:

(two) inductive biases in category learning.

"B"

beach or grass?

dog or cow?

beach or grass?

dog or cow?

contains "film"

This is hands down the worst **film** I've ever seen. A great film in its genre, the direction, acting, most especially...

What a script, what a story, what a mess!

This is a great movie. Too bad it is not available on home video.

sentiment

shape variation color variation

training condition #1

training condition #2

"Exemplar bias" (vs "rule bias"; EvR):

rule bias: train test

rule bias: exemplar bias: test train

rule bias: **exemplar** bias: test train

 $=\mathbb{E}\left[\operatorname{accuracy}()\right] - \mathbb{E}\left[\operatorname{accuracy}()\right]$

training condition #3

"Feature-level bias" (FLB):

"Feature-level bias" (FLB): which equally predictive feature?

"Feature-level bias" (FLB): which equally predictive feature?

shape bias: train test

"Feature-level bias" (FLB):

which equally predictive feature?

"Feature-level bias" (FLB):

which equally predictive feature?

shape variation

mouth open?

wearing lipstick?

bright sky

truck (obstacle)

bright sky

rule-based

truck (obstacle) bright sky

More in the paper...

We demonstrate that neural networks are **feature-biased** and **exemplar-based** in various settings (2D points-in-plane, text, image).

We make normative statements about when a model should be rule-based or exemplar-based (compositional generalization and long-tailed distributions, resp.).

More broadly...

We leave it to future work to understand what components of deep learning systems control **feature-level bias** and **rule/exemplar bias**.

We contribute to "cognitive science" for ML.

Ishita Dasgupta <idg@deepmind.com>, Erin Grant <eringrant@berkeley.edu>