Discrete Tree Flows via Tree Structured Permutations

Mai Elkady*+, Jim Lim*, David I. Inouye

*Equal contribution, +Presenter

Modeling discrete categorical data has multiple applications

- Discrete datasets
 - DNA sequences
 - Medical records
 - Molecular structure (binary)
 - Text
- Applications for modeling discrete distribution
 - Synthetic data generation
 - Compression
 - Detecting outliers

Flow-based approaches use invertible models for **exact** likelihood and sampling

Flow models for *continuous* data compute exact likelihood via change of variables

• Depend on the **change of the variables formula**, for continuous random variables, this is:

$$P(x) = Q(z) \left| \frac{\partial z}{\partial x} \right|$$

Such that:

$$z = f(x)$$

 $f: \mathbb{R}^d \to \mathbb{R}^d$ which is invertible
When sampling $x = f^{-1}(z)$

Image modified from Weng, Lilian (2021).

Discrete flow models simplify to a permutation and a base distribution

• For discrete random variables: P(x) = Q(z)

Such that

z = f(x) $f: \mathbb{Z}^d \to \mathbb{Z}^d$ is invertible (i.e., a **permutation**)

When sampling $x = f^{-1}(z)$

- The $\left|\frac{\partial z}{\partial x}\right|$ term is 1 because f does not change volume
- Goal: Estimate f and Q (i.e., permutation and base distribution)

Prior works rely on relaxation or approximation but do not handle on a fundamental level

- Embed into the continuous space
 - Latent Flows by Ziegler & Rush [2019]
 - CNF by Lippe & Gavves [2021]
 - Argmax flows by Hoogeboom et al. [2021]
- Use STEs to approximate gradients
 - Autoregressive Flows and Bipartite Flows by Tran et al. [2019]
 - IDF by Hoogeboom et al. [2019]
 - IDF++ by Van den Berg et al. [2020]
- Use both continuous and discrete learning
 - Discrete Denoising Flows by Lindt & Hoogeboom [2021]

Our approach: Discrete Tree Flows using Tree Structured Permutations

- Utilizes tree-structured permutations (TSPs) for compactly parameterizing a set of permutations
- Discrete Tree Flow (DTF) model is merely a composition of multiple TSPs

Tree structured permutations (TSP) apply **independent** permutations at each node

8

Theory: Invertibility and universal approximation of DTFs

- TSPs are invertible when a simple condition is satisfied. (Theorem 1)
- A DTF (a composition of TSPs) is a universal approximator of any permutation. (Appendix D)

Learning TSPs in two stages

• Our goal is to minimize the Negative Loglikelihood (NLL) assuming an **independent** base distribution Q_z

$$\underset{\sigma_{\mathcal{T}}}{\operatorname{argmin}} \min_{Q_{Z}} \frac{-1}{n} \sum_{i=1}^{n} \log(Q_{Z}(\sigma_{\mathcal{T}}(x_{i})))$$

 Q_z : is an independent distribution.

 $\sigma_{\mathcal{T}}(x_i)$: is the evaluation of all permutations encountered in \mathcal{T} for the path that x_i takes

- Learning is done in 2 parts:
 - 1. Learn the structure of the tree
 - 2. Learn the permutations associated with each node

Stage 1: Learn structure of the tree

1. RND – Random splitting criteria

2. GLP – Greedy local permutation splitting criteria

A heuristic relying on the hypothetical decrease in NLL

Stage 2: Learn node permutations

We prove that:

1) *rank consistent* (i.e., sorted counts) TSPs are optimal *given* tree structure.

2) our stage 2 algorithm finds this rank consistent TSP.

Synthetic: DTF is faster than deep learning counterparts with competitive log-likelihood

AI	F	BF	DDF	DTF _{GLP}				
8GAUSSIAN								
NLL 6.9	92 (± 0.06)	$7.21 \ (\pm 0.09)$	$6.42 (\pm 0.03)$	6.5 (± 0.03)				
TT 15	5.9 (± 2.2)	$231.6 (\pm 5.2)$	$119.8 (\pm 0.8)$	7.3 (± 0.1)		Exper	imental	
СОР-Н								
NLL 1.5	53 (± 0.02)	$1.47 (\pm 0.06)$	$1.46 (\pm 0.1)$	$1.33~(\pm~0.02)$		Result	S:	
TT 10	$0.7 (\pm 0.2)$	$13.2 (\pm 0.2)$	58.1 (± 1.0)	\leq 0.1 (± 0.0)		Synth	atic	
COP-M						Synthetic		
NLL 1.7	76 (± 0.1)	$1.62 (\pm 0.05)$	$1.51 (\pm 0.16)$	$1.4~(\pm~0.02)$		Datasets		
TT 10	$0.6 (\pm 0.02)$	$13.3 (\pm 0.06)$	77.9 (± 1.8)	\leq 0.1(±0.0)				
COP-W						A F	A	
NLL 2.4	42 (± 0.02)	$2.35 (\pm 0.03)$	$2.29 (\pm 0.07)$	$\textbf{2.22}~(\pm~0.02)$			Autoregressive	
TT 10	$0.5 (\pm 0.01)$	$13.2 (\pm 0.1)$	$77.3 (\pm 1.7)$	$\leq 0.1~(\pm$ 0.0)			FIOWS	
						BF	Bipartite Flows	
	· Best Performance			· Second Best Performance		DDF	Discrete	
							Denoising Flows	

Real datasets: RND is fastest while GLP has comparable log-likelihood

		$D \Pi GLP$	$D \Gamma_{RND}$
7 (± 2.28) 23.02	(± 2.3) 19.18 (±	(± 3.48) 14.15 (± 2.44)	16.66 (± 2.98)
(± 2.0) 20.9 ((± 2.7) 175.8 (±	1.9) 9.9 (± 0.2)	$0.5~(\pm~0.0)$
014 (± 0.32) 205.9	$4 (\pm 0.26)$ 144.78	(± 10.52) 177.75 (± 0.56)	$187.44 (\pm 1.17)$
(± 359.2) 3290.	5 (± 13.3) 2909.3	(± 45.4) 5213.7 (± 204.9)	$105.6 \ (\pm \ \text{0.1})$
55 (± 0.69) 471.5	4 (± 1.87) 446.86	(± 8.64) 437.19 (± 1.02)	$470.9 (\pm 6.1)$
0(± 2.1) 251.6	209.4 (±	e 0.6) 411.5 (± 2.3)	5.9 (± 0.0)
	7 (\pm 2.28) 23.02 (\pm 2.0) 20.9 (014 (\pm 0.32) 205.9 4.6 (\pm 359.2) 3290. 55 (\pm 0.69) 471.5 0(\pm 2.1) 251.6	7 (± 2.28) 23.02 (± 2.3) 19.18 ($\pm 1.75.8$ (± 1	7 (± 2.28) 23.02 (± 2.3) 19.18 (± 3.48) 14.15 (± 2.44) (± 2.0) 20.9 (± 2.7) 175.8 (± 1.9) 9.9 (± 0.2) 014 (± 0.32) 205.94 (± 0.26) 144.78 (± 10.52) 177.75 (± 0.56) 0.4.6 (± 359.2) 3290.5 (± 13.3) 2909.3 (± 45.4) 177.75 (± 0.56) 55 (± 0.69) 471.54 (± 1.87) 446.86 (± 8.64) 437.19 (± 1.02) 0.(± 2.1) 251.6 (± 0.5) 209.4 (± 0.6) 411.5 (± 2.3)

: Best Performance

: Second Best Performance

Thanks!