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Modeling discrete categorical
data has multiple applications

— * Discrete datasets

I * DNA sequences

* Medical records

* Molecular structure (binary)
* Text

* Applications for modeling discrete distribution
e Synthetic data generation
* Compression
* Detecting outliers




-low-based approaches use invertible
models for exact likelihood and sampling
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Image modified from Weng, Lilian (2021).




Flow models for continuous
data compute exact likelihood
via change of variables

* Depend on the change of the variables formula, for
continuous random variables, this is:

d
P(0) = 0(2) |-

Such that:
z = f(x)
f: R%Y > R? which is invertible
When sampling x = f~1(2)
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Discrete flow models

simpli
and a

v to a permutation

nase distribution

* For discrete random variables:

Such that

P(x) = Q(2)

z= f(x)

f:Z% - Z% isinvertible (i.e., a permutation)

When sampling x = f~1(2)

] :
* The ‘é‘ term is 1 because f does not change volume

* Goal: Estimate f and Q
(i.e., permutation and base distribution)
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Prior works rely on
relaxation or

approximation but
do not handle on a
fundamental level

* Embed into the continuous space
* Latent Flows by Ziegler & Rush [2019]
* CNF by Lippe & Gavves [2021]
* Argmax flows by Hoogeboom et al. [2021]

* Use STEs to approximate gradients

e Autoregressive Flows and Bipartite Flows
by Tran et al. [2019]

* IDF by Hoogeboom et al. [2019]
* IDF++ by Van den Berg et al. [2020]

e Use both continuous and discrete learning

* Discrete Denoising Flows by Lindt &
Hoogeboom [2021]



Our approach: Discrete Tree Flows
using Tree Structured Permutations

» Utilizes tree-structured permutations (TSPs) for compactly parameterizing a
set of permutations

* Discrete Tree Flow (DTF) model is merely a composition of multiple TSPs



Tree structured permutations (TSP) apply
independent permutations at each node
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Theory: Invertibility and universal
approximation of DTFs

* TSPs are invertible when a simple condition is satisfied.
(Theorem 1)

A DTF (a composition of TSPs) is a universal approximator of any
permutation. (Appendix D)



Learning TSPs In two stages

e Our goal is to minimize the Negative Loglikelihood (NLL) assuming an independent

base distribution Q, 0,:1 ind dent
7z IS an Inaependen

argmln mln S log(QZ (O-T (xl))) distribution.

or
o7 (x;): is the evaluation
of all permutations
encountered in J for the

* Learningis done in 2 parts:
path that x;takes

1. Learn the structure of the tree
2. Learn the permutations associated with each node



Stage 1: Learn structure of the tree

1. RND — Random splitting criteria

2. GLP — Greedy local permutation splitting criteria

A heuristic relying on the hypothetical decrease in NLL



Stage 2: Learn node permutations

Stage 1: Learn Tree Structure Stage 2: Learn node permutations
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We prove that: [

1) rank consistent (i.e., sorted counts) TSPs are optimal
given tree structure.

2) our stage 2 algorithm finds this rank consistent TSP.
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Synthetic: DTF is faster than deep learning
counterparts with competitive log-likelihood

AF BF DDF DTFgrp
S8GAUSSIAN
NLL 6.92 (+006) 7.21 (£009  6.42 (+0.03) 6.5 (£ 0.03)
TT 1559 220 231.6 (52 119.8 (+038) 7.3 (+0.1) Experimental
COP-H
NLL 1.53 (+ 002 1.47 (+006) 1.46 (Lo.1) 1.33 (1 0.02) Resu |tS:
TT 10.7 (+0.2) 13.2 (+02) 58.1 (4 1.00 <0.1 (+ 0.0 .
COP-M Synthetic
NLL 1.76 (+o0.1) 1.62 (+005) 1.51 (£016) 1.4 (+0.02) DataSEtS
TT 10.6 (+0.02) 13.3 1006y 77.9 (1138 <0.1¢+0.0)
COP-W .
NLL 2.42 (+ 002 2.350.03 [2.29 (£00n 2.22 (1 0.02) AF Auto;legresswe
TT 10.5 ooy 132 @0y 773 @1n  <0.1 (.t o.0) OWs
BF Bipartite Flows
- Best Performance : Second Best Performance DDF Discrete
Denoising Flows
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Real datasets: RND is fastest while GLP
nas comparable log-likelihood

AF BF DDF DTFqLp DTFrn D
Mushroom Dataset
NLL 24 .87 (+228) 23.02 +23 1918 (+3.48) 14.15 (=249 16.66 (+298)
Training Time insec ~ 29.3 (+20) 20.9 27 175.8 =19 0.9 (+02) 0.5 0.0
MNIST Dataset
NLL 206.014 +o03»  205.94 (+026) 144.78 (+ w32 177735 (+056 187.44 (+ 1.17)
Training Time insec  12104.6 (+32 32905 133 20093 459 52137 xome  105.6 (£ 0.0
Genetic Dataset
NLL 490.55 +0.69) 471.54 (+ 187 446.86 (+8.69) 437.19 (+ 1.02) 470.9 + 6
Training Time insec  834.0x 21 251.6 (z05) 209.4 (+0s) 4115 +23 5.9 + 00

: Best Performance

: Second Best Performance
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Thanks!




