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Motivation

- Gradient descent (GD) runs the iteration

θt+1 = θt − η∇f (θt) ,

to optimize a cost function f .

- (As we all know) it’s conceptual building block for SGD
- most analyses of (S)GD relies on “descent lemma”: if f is L-smooth,
i.e., ∇2f ⪯ L then

f (θt+1) ≤ f (θt)− η
(
1− L

η

2

)
∥∇f (θt)∥2 . (1)

To ensure descent via inequality (1), most analyses impose the condition:

L <
2

η
. (Stable Regime)

- When cost is quadratic&convex, condition (Stable Regime) is in fact
necessary for convergence: if η > 2

L , then GD diverges.
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Is this true for nonconvex deep learning optimization?

- We use (full-batch) GD to train a neural network on 5, 000 examples
from CIFAR-10 with the CrossEntropy loss.
- A fully-connected architecture with two hidden layers of width 200 with
ReLU activations.

- Throughout the talk, sharpness means the maximum eigenvalue of the
loss Hessian, i.e., λmax(∇2f (θt)).
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Unstable convergence

- Recently, it has been observed that GD on neural networks often violates
condition (Stable Regime). (Cohen et al. 2021) observe that when we
run GD to train a neural network, the condition (Stable Regime) fails, 1

- but contrary to the common wisdom from convex optimization, the
training loss still (non-monotonically) decreases in the long run.

- We call this phenomenon unstable convergence.

1Cohen, Kaur, Li, Kolter, Talwalkar. “Gradient descent on neural networks
typically occurs at the edge of stability.” ICLR, 2021
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What is this work about?

- Discuss the main causes driving the unstable convergence
phenomenon.

- Identify the main features that characterize unstable convergence (in
terms of loss, iterates, and sharpness behaviors).
- Investigate and clarify the relations between them.
- Our characterizations demonstrate that the features of unstable
convergence are in stark contrast with those of traditional stable
convergence.
- In particular, our main features provide alternative ways to identify
unstable convergence in practice.
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Illustration of our main results (ReLU network)

Object Quantity Behavior

Loss RP(θt) oscillates near 0
Iterates L(θt ; η∇f (θt)) oscillates near 2/η
Sharpness λmax(∇2f (θt)) oscillates near

above
2/η

- Relative Progress: RP(θ) := f (θ−η∇f (θ ))−f (θ )

η∥∇f (θ )∥2

- Directional smoothness: L(θ ; v) := ⟨v,∇f (θ )−∇f (θ−v)⟩
∥v∥2
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It’s actively studied in the literature!!

▶ Cohen, Kaur, Li, Kolter, Talwalkar. “Gradient descent on neural
networks typically occurs at the edge of stability.” ICLR, 2021

▶ Arora, Li, Panigrahi, “Understanding gradient descent on edge of
stability in deep learning.” ICML 2022.

▶ Ma, Kunin, Wu, Ying. “The multiscale structure of neural network
loss functions: The effect on optimization and origin.” 2022.

▶ and more!!



Thank you for listening

If you have any questions, shoot me an email! kjahn@mit.edu


