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- When cost is quadratic&convex, condition (Stable Regime) is in fact
necessary for convergence: if n > % then GD diverges.
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Unstable convergence

- Recently, it has been observed that GD on neural networks often violates
condition (Stable Regime). (Cohen et al. 2021) observe that when we
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- Recently, it has been observed that GD on neural networks often violates
condition (Stable Regime). (Cohen et al. 2021) observe that when we
run GD to train a neural network, the condition (Stable Regime) fails, *

- but contrary to the common wisdom from convex optimization, the
training loss still (non-monotonically) decreases in the long run.

- We call this phenomenon unstable convergence.

LCohen, Kaur, Li, Kolter, Talwalkar. “Gradient descent on neural networks
typically occurs at the edge of stability.” ICLR, 2021
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- Discuss the main causes driving the unstable convergence
phenomenon.

- Identify the main features that characterize unstable convergence (in
terms of loss, iterates, and sharpness behaviors).

- Investigate and clarify the relations between them.

- Our characterizations demonstrate that the features of unstable
convergence are in stark contrast with those of traditional stable
convergence.

- In particular, our main features provide alternative ways to identify
unstable convergence in practice.
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It's actively studied in the literature!!

» Cohen, Kaur, Li, Kolter, Talwalkar. “Gradient descent on neural
networks typically occurs at the edge of stability.” ICLR, 2021

» Arora, Li, Panigrahi, "Understanding gradient descent on edge of
stability in deep learning.” ICML 2022.

» Ma, Kunin, Wu, Ying. “The multiscale structure of neural network
loss functions: The effect on optimization and origin." 2022.

» and more!!



Thank you for listening

If you have any questions, shoot me an email! kjahn@mit.edu



