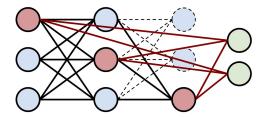


Head2Toe

Utilizing Intermediate Representations for Better Transfer Learning

Utku Evci, Vincent Dumoulin, Hugo Larochelle, Michael C. Mozer ICML 22'



Transfer Learning for SOTA

- Train on large upstream data set, fine tune on smaller downstream data set,
- Unsupervised / supervised pre-training is a popular recipe.
 - Language (BERT, GPT-3), Vision (CLIP, VIT), Speech (wav2vec), RL?
- Why not train downstream data set from scratch?
 - Slower convergence
 - Worse generalization

Common Transfer Learning Recipes

- LINEAR: Only train a new classification head
 - Cheap to run and store
 - Suboptimal performance
- **FINE-TUNING**: Pretrained feature extractor is tuned together with the head
 - High cost of running and storing for each task.
 - Mitigation strategies exist [1,2,3].
 - Better performance

Can we have best of both worlds?

- Parameter-Efficient Transfer Learning with Diff Pruning
- Parameter-Efficient Transfer Learning for NLP
- 3. Learning a Universal Template for Few-shot Dataset Generalization

Taylor Approximation of Fine-Tuning

Input sample

Solution after finetuning

Initial weights

Loss function

$$F(x|w^*) \approx F(x;w) + \sum_{i,j} \frac{\partial F(x;w)}{\partial w_{ij}} \Delta w_{ij}$$

Activation

Pre-activation

$$\approx F(x;w) + \sum_{i,j} h_i \frac{\partial F(x;w)}{\partial z_j} \Delta w_{ij}$$

$$pprox F(x; w) + \sum_{i} h_{i} \sum_{j} \frac{\partial F(x; w)}{\partial z_{j}} \Delta w_{ij}$$

$$\approx F(x; w) + \sum_{i} h_{i} c_{i,x}$$

Hypothesis

Fine-tuning performance can be matched using a linear probe on intermediate activations.

Problems with Extended Feature Set

- Overfitting: When #FeatureDim>>#Samples.
 - Previous work* shows that regularization helps few-shot transfer when intermediate features are used.

Method	Aggregation	5-shot	1-shot
	last	76.28 ± 0.41	60.09 ± 0.61
Cls	concat	75.67 ± 0.41	$57.15\ \pm0.61$
	SUR	79.25 ± 0.41	60.79 ± 0.62

- Cost: O(#FeatureDim * #Classes) both memory and compute.
 - #FeatureDim=1m, #Classes=100: 40GB (float32)

The Case for Feature Selection

- **Assumption:** A small subset of features is enough to achieve good generalization (and less likely to overfit when trained).
- Implication: Inference cost is now O(#FeatureKeptDim * #Classes).

Head2Toe (H2T) w/ Group-Lasso

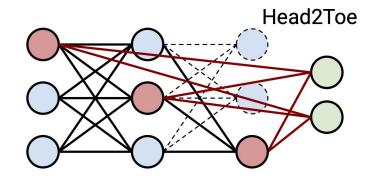
Given a pretrained NN:

$$egin{aligned} oldsymbol{z}_\ell &= oldsymbol{h}_{\ell-1} oldsymbol{W}_\ell &; \quad oldsymbol{h}_\ell &= f(oldsymbol{z}_\ell) \ oldsymbol{z}_L' &= oldsymbol{h}_{all} oldsymbol{W}_{all} &; \quad oldsymbol{h}_{all} &= \operatorname{concat}(a_1(oldsymbol{h}_1), a_2(oldsymbol{h}_2), ..., a_L(oldsymbol{h}_L)) \end{aligned}$$

- Train \mathbf{W}_{all} with group-lasso and select features with highest l2-norm.

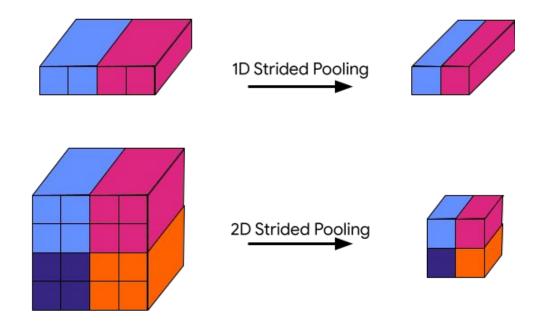
$$|m{W}|_{2,1} = |m{s}|_1 = \sum_i |s_i| \;\;\; ; \;\;\; s_i = \sqrt{\sum_j w_{ij}^2}$$

 After calculating the scores, keep a fraction f of features and train a linear classifier on the selected features.



Selection of Intermediate Features

- Strided pooling to aggregate features.
- Pool size is selected per layer
 s.t. there are ~T features per layer.
- Flatten and normalize features from each layer to unit-norm.



Experimental Setup

- VTAB-1k benchmark: 19 image classification tasks with 1000 training samples each.
 - Natural: natural images
 - Structured: rendered artificial images
 - Specialized: images from non-standard cameras
- Hyper-parameter selection / Validation
 - 5-fold cross validation for <u>each method</u> and <u>transfer task</u> separately.
 - 2 learning rates
 - 2 training steps
 - 3 regularization coefficients (2 for Head2Toe)
 - 3 target feature size
- 3 seeds per task

Results on ResNet-50

We match/exceed the fine-tuning results reported in the VTAB paper*.

	<u>Natural</u>								Speci	alized			Structured							
	• CIFAR-100	• Caltech101	• DTD	• Flowers 102	• Pets	• SVHN	• Sun397	• Camelyon	• EuroSAT	• Resisc45	 Retinopathy 	• Clevr-Count	• Clevr-Dist	• DMLab	• KITTI-Dist	• dSpr-Loc	• dSpr-Ori	• sNORB-Azim	• sNORB-Elev	• Mean
Linear	48.5	86.0	67.8	84.8	87.4	47.5	34.4	83.2	92.4	73.3	73.6	39.7	39.9	36.0	66.4	40.4	37.0	19.6	25.5	57.0
+All- ℓ_2	44.7	87.0	67.8	84.2	86.1	81.1	31.9	82.6	95.0	76.5	74.5	50.0	56.3	38.3	65.5	59.7	44.5	37.5	40.0	63.3
+All- ℓ_1	50.8	88.6	67.4	84.2	87.7	84.2	34.6	80.9	94.9	75.6	74.7	49.9	57.0	41.8	72.9	59.0	44.8	37.5	40.8	64.6
+All- $\ell_{2,1}$	49.1	86.7	68.5	84.2	88.0	84.4	34.8	81.5	94.9	75.7	74.3	48.3	58.4	42.0	74.4	58.8	45.2	37.8	34.4	64.3
Head2Toe	47.1	88.8	67.6	85.6	87.6	84.1	32.9	82.1	94.3	76.0	74.1	55.3	59.5	43.9	72.3	64.9	51.1	39.6	43.1	65.8
Scratch*	11.0	37.7	23.0	40.2	13.3	59.3	3.9	73.5	84.8	41.6	63.1	38.5	54.8	35.8	36.9	87.9	37.3	20.9	36.9	42.1
Fine-tuning	33.2	84.6	54.5	85.2	79.1	87.8	16.6	82.0	92.5	73.3	73.5	54.6	63.7	46.3	72.1	94.8	47.1	35.0	33.3	63.6

Results on ViT-B/16

- Similarly, Head2Toe matches fine-tuning. +5% if the backbone has option to be tuned.

				Specia	lized		Structured													
	• CIFAR-100	• Caltech101	• DTD	• Flowers 102	• Pets	• SVHN	• Sun397	 Camelyon 	• EuroSAT	• Resisc45	 Retinopathy 	• Clevr-Count	• Clevr-Dist	• DMLab	• KITTI-Dist	• dSpr-Loc	• dSpr-Ori	• sNORB-Azim	• sNORB-Elev	• Mean
Linear	55.0	81.0	53.6	72.1	85.3	38.7	32.3	80.1	90.8	67.2	74.0	38.5	36.2	33.5	55.7	34.0	31.3	18.2	26.3	52.8
+All- ℓ_2	57.3	87.0	64.3	82.8	84.0	75.7	32.4	82.0	94.7	79.7	74.8	47.4	57.8	41.4	62.8	46.6	33.3	31.0	38.8	61.8
+All- ℓ_1	58.4	87.3	64.9	83.3	84.6	80.0	34.4	82.3	95.6	79.6	73.6	47.9	57.7	42.2	65.1	44.5	33.4	32.4	38.4	62.4
+All (Group)	59.6	87.1	64.9	85.2	85.4	79.5	35.3	82.0	95.3	80.6	74.2	47.9	57.8	40.7	64.9	46.7	33.6	31.9	39.0	62.7
Head2Toe	58.2	87.3	64.5	85.9	85.4	82.9	35.1	81.2	95.0	79.9	74.1	49.3	58.4	41.6	64.4	53.3	32.9	33.5	39.4	63.3
Scratch	7.6	19.1	13.1	29.6	6.7	19.4	2.3	71.0	71.0	29.3	72.0	31.6	52.5	27.2	39.1	66.1	29.7	11.7	24.1	32.8
Fine-tuning	44.3	84.5	54.1	84.7	74.7	87.2	26.9	85.3	95.0	76.0	70.4	71.5	60.5	46.9	72.9	74.5	38.7	28.5	23.8	63.2
Head2Toe-FT	43.9	82.3	53.5	84.9	76.7	86.5	24.5	79.9	95.9	77.5	74.3	68.0	70.9	48.2	72.4	76.1	44.8	32.1	42.5	65.0
Head2Toe-FT+	57.3	87.1	63.8	83.7	84.8	86.8	35.1	80.2	96.1	79.9	74.1	69.9	71.2	47.8	72.8	77.4	45.9	33.9	43.0	67.9

Cost of Head2Toe

- FLOPs cost of H2T consists of three parts:
 - a. Calculating the representations for all data (fixed)
 - **b.** Training W_{all} (~#FeatureDim * #Classes)
 - c. Validating different fractions: ~18% of **(b)**.
- Storage size of H2T depends on #FeaturesSelected and the bitmap.

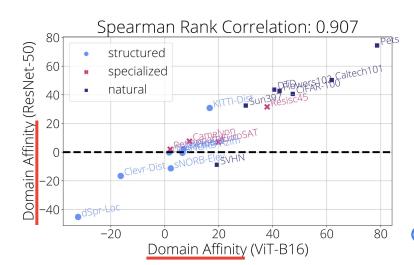
Dataset	F	N	С	FLOPs (vs FINETUNING)	Size (vs FINETUNING)	Size (vs LINEAR)				
Caltech101	0.010	467688	102	0.009675	0.020750	2.353167				
CIFAR-100	0.200	30440	100	0.005792	0.025743	2.977301				
Clevr-Dist	0.001	467688	6	0.005747	0.000741	1.417419				
Clevr-Count	0.005	30440	8	0.000568	0.000092	0.132278				
Retinopathy	0.200	467688	5	0.005657	0.020531	47.099634				
DMLab	0.020	467688	6	0.005747	0.003011	5.756287		FLOPs	Size	Size
dSpr-Orient	0.200	30440	16	0.005302	0.004183	3.001686	\(
dSpr-Loc	0.005	467688	16	0.006644	0.002212	1.58762	16,	vs FINETUNING)	(vs FINETUNING)	(vs Linear)
DTD	0.005	1696552	47	0.015823	0.019157	4.60	_	0.006295	0.010729	5.674742
EuroSAT	0.100	30440	10	0.005267	0.001336	/	/	U.000293	0.010729	3.074742
KITTI-Dist	0.020	467688	4	0.005567	0.002215					
Flowers102	0.100	30440	102	0.001117	0.013146					
Pets	0.002	467688	37	0.003842	0.0020					
Camelyon	0.020	30440	2	0.005220	00					
Resisc45	0.020	467688	45	0.009247						
sNORB-Azim	0.002	1696552	18	0.011069						
sNORB-Elev	0.050	467688	9	0.006016					Google	Research
Sun397	0.100	30440	397	0.00282					3.5	
SVHN	0.005	1696552	10	0.0						
-	Average	;		0.006295	0.010729	5.674742		-		

Defining a Metric for Task/Domain Affinity

Assumption: If a downstream task is similar to the upstream dataset,
 it will achieve better linear performance in a data-limited setting.

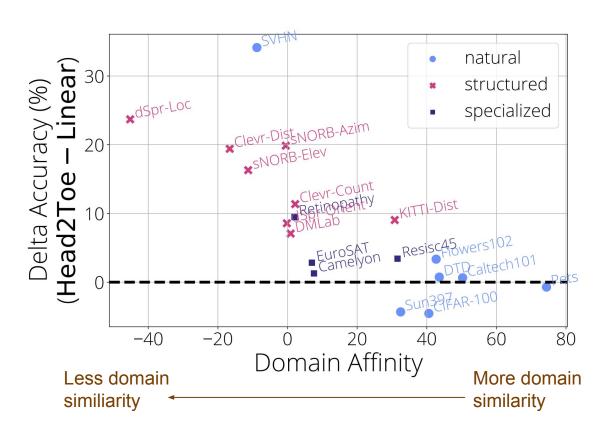
$$DomainAffinity = Acc_{LINEAR} - Acc_{SCRATCH}$$

 This metric is robust to different backbones and algorithms used to train it.



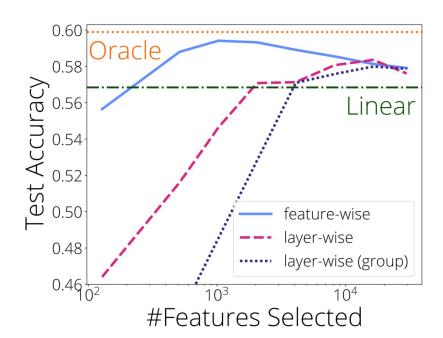
Google Research

Head2Toe Improves OOD Generalization



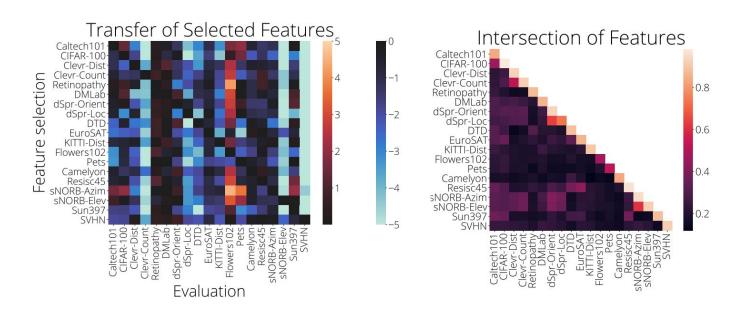
Head2Toe - Layers vs. Features

- What if we select layers instead of individual features?
 - Feature selection works better.



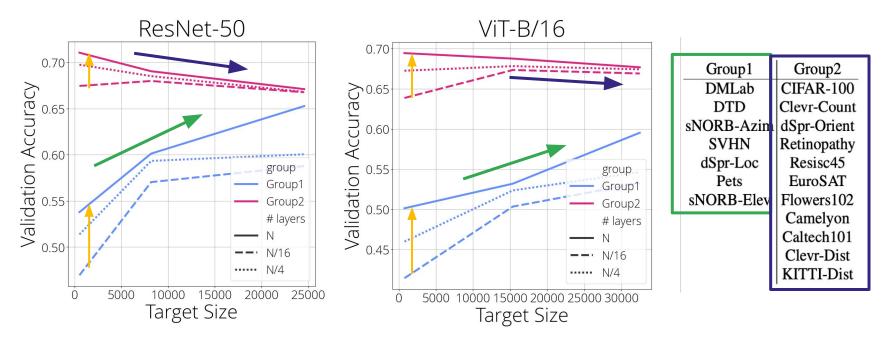
Importance of Dynamic Adaptation

- No single set of features perform best over all tasks.
- Features have <20% intersection.



Bitter Lesson*

- Utilizing more layers always improves performance.
- Using more features per layer (smaller pooling size) is useful only a subset of tasks (Group-1).

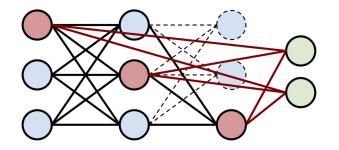


Future Research

- Scaling # candidate features further up.
 - Bigger and multiple backbones.
 - Better/cheaper/simpler feature selection algorithms.
 - Better/simpler feature aggregation functions.
- Applying Head2Toe to different domains.

Head2Toe Summary

- Finetuning performance can be matched or exceeded with a special linear probe on intermediate features.
- This strategy helps most on far transfer tasks.
- Extracting features from more layers and features help.
- Select features for each task separately.



Thank you for listening!