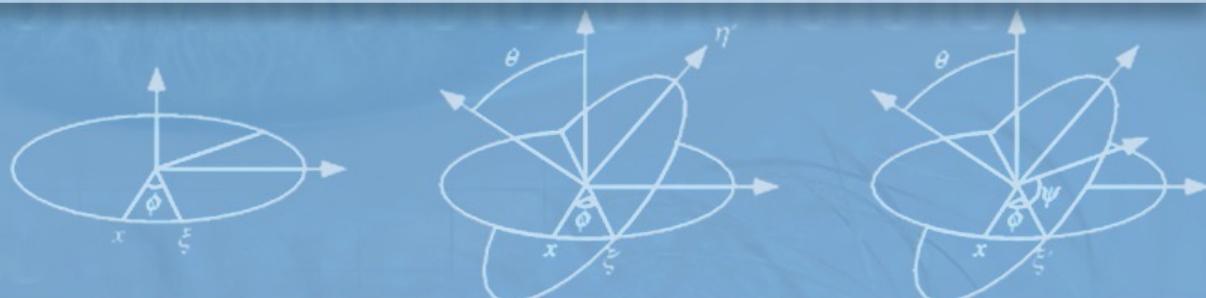


JHU vision lab

Reverse Engineering ℓ_p attacks: A block-sparse optimization approach with recovery guarantees

ICML 2022

Darshan Thaker*, Paris Giampouras*, René Vidal



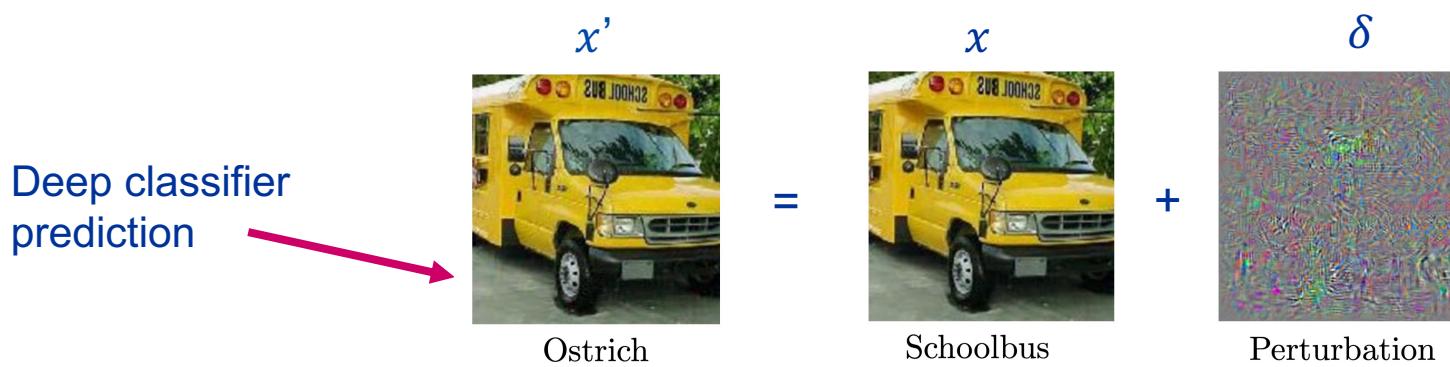
THE DEPARTMENT OF BIOMEDICAL ENGINEERING

The Whitaker Institute at Johns Hopkins

JOHNS HOPKINS
MATHEMATICAL INSTITUTE
for DATA SCIENCE

Reverse engineering ℓ_p attacks

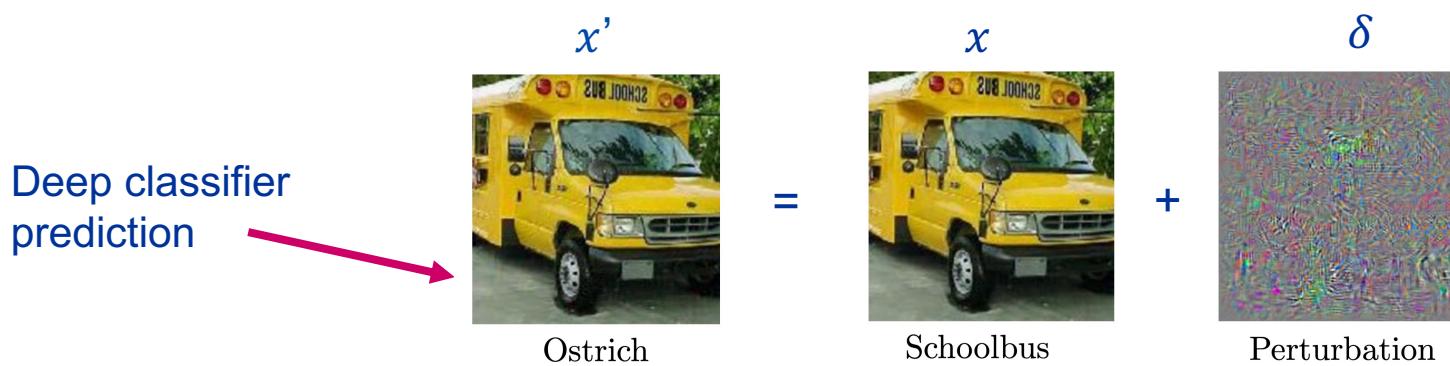
- **Objective:** Given signal x' adversarially corrupted using attack from toolchain $A = \{a_1, a_2, \dots\}$



- Denoise x' and then classify **clean signal** x and classify **adversarial perturbation** δ (e.g., find its ℓ_p -bounded attack family)

Reverse engineering ℓ_p attacks

- **Objective:** Given signal x' adversarially corrupted using attack from toolchain $A = \{a_1, a_2, \dots\}$



- Denoise x' and then classify **clean signal** x and classify **adversarial perturbation** δ (e.g., find its ℓ_p -bounded attack family)
- **Idea:** Use block-sparse representations of x and δ on predefined dictionaries to formulate optimization problem

Sparse Representation-based Classification

- Represent x' as a **block-sparse** combination of training examples in D_s

$$x' = D_s \times c_s + \delta$$

x' is sparsely represented

Diagram illustrating the sparse representation of x' as a block-sparse combination of training examples in D_s . The equation $x' = D_s \times c_s + \delta$ is shown, where D_s is a matrix of 30 training faces, c_s is a sparse coefficient vector, and δ is the error term. A red arrow points to the x' image, indicating it is sparsely represented.

D_s (Training Examples):

0	5	10	15	20	25	30

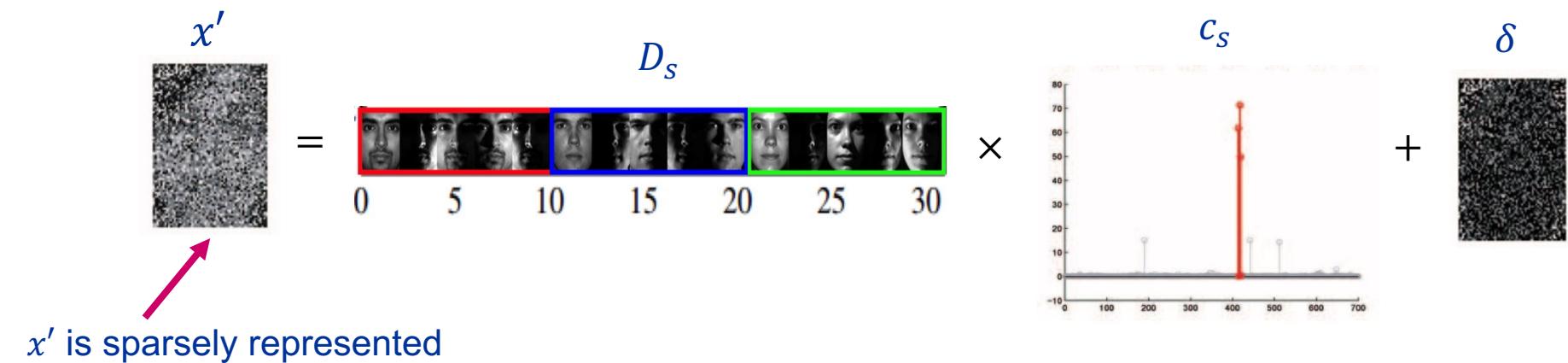
c_s (Coefficient Vector):

0	5	10	15	20	25	30
15	15	15	15	15	15	15

δ (Error Term):

Sparse Representation-based Classification

- Represent x' as a **block-sparse** combination of training examples in D_s



- Find **sparse coefficients** and **corruptions** by solving the following optimization problem

$$\min_{\{c_s, \delta\}} \|c_s\|_{1,2} + \|\delta\|_1 \text{ such that } x' = D_s c_s + \delta$$

assumed to be sparse

Proposed approach to structured sparse attacks

- **Modelling assumption:**

$$x' = D_s c_s + D_a c_a$$

- **Optimization problem:**

$$\min_{c_s, c_a} ||c_s||_{1,2} + ||c_a||_{1,2} \quad \text{such that } x' = D_s c_s + D_a c_a$$

$$D_s = \begin{array}{c|c|c} \{x_i | y_i = 1\} & \{x_i | y_i = 2\} & \dots \\ \text{Signal Block 1} & \text{Signal Block 2} & \end{array}$$

$$D_a = \begin{array}{c|c|c|c} \{a_1(x_i) | y_i = 1\} & \{a_2(x_i) | y_i = 1\} & \dots & \\ \text{Attack Block 1} & & & \\ \hline \{a_1(x_i) | y_i = 2\} & \{a_2(x_i) | y_i = 2\} & \dots & \\ \text{Attack Block 2} & & & \\ \hline & & & \dots \end{array}$$

Proposed approach to structured sparse attacks

- **Modelling assumption:**

$$x' = D_s c_s + D_a c_a$$

- **Optimization problem:**

$$\min_{c_s, c_a} ||c_s||_{1,2} + ||c_a||_{1,2} \quad \text{such that } x' = D_s c_s + D_a c_a$$

- **Challenge:** Is this modelling assumption realistic?
 - **Contribution 1:** We theoretically demonstrate that gradient-based test-time attacks are sparse linear combinations of gradient-based train-time attacks

Proposed approach to structured sparse attacks

- **Modelling assumption:**

$$x' = D_s c_s + D_a c_a$$

- **Optimization problem:**

$$\min_{c_s, c_a} \|c_s\|_{1,2} + \|c_a\|_{1,2} \quad \text{such that } x' = D_s c_s + D_a c_a$$

- **Challenge:** Does solving the above problem provably work?
 - **Contribution 2:** We show geometric recovery guarantees for recovering the correct signal and attack class
 - Assuming that subspaces are sufficiently separated and atoms of signal and attack dictionaries are well-distributed in the subspaces they span

Proposed approach to structured sparse attacks

- **Modelling assumption:**

$$x' = D_s c_s + D_a c_a$$

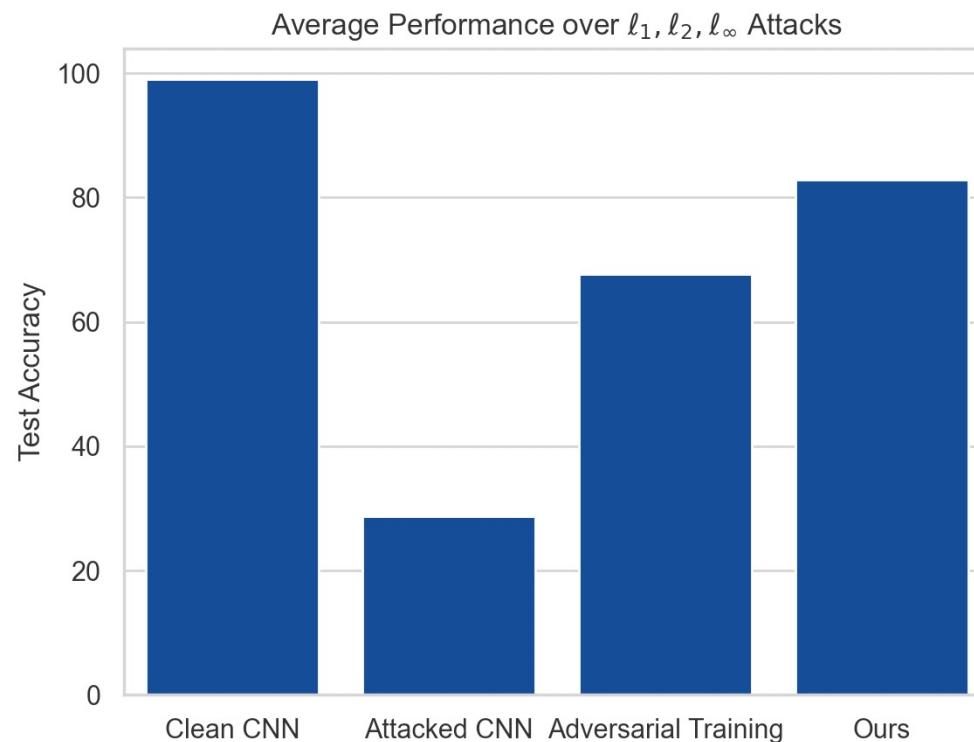
- **Optimization problem:**

$$\min_{c_s, c_a} \|c_s\|_{1,2} + \|c_a\|_{1,2} \quad \text{such that } x' = D_s c_s + D_a c_a$$

- **Challenge:** Can we efficiently solve the optimization problem?
 - **Contribution 3:** We develop an efficient active set homotopy algorithm
 - Solve sequence of problems restricted to few nonzero blocks of dictionary

Experiments: MNIST Dataset

- We show effectiveness of our approach as a defense against a union of different attacks



Conclusion

- **Modelling:** Developed a model for signal and adversarial attack classification using a block-sparse modelling assumption
- **Validity:** Theoretically demonstrated validity of the modelling assumption for gradient-based attacks
- **Theory:** Proved geometric recovery guarantees for correct signal and attack recovery
- **Efficiency:** Developed an efficient algorithm to solve problem in practice

Thank you!

