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Reverse engineering ℓ! attacks
• Objective: Given signal 𝑥! adversarially corrupted using attack 

from toolchain 𝐴 = 𝑎", 𝑎#, …

Szegedy et al. “Intriguing properties of neural networks”, 2013.
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• Denoise 𝑥′ and then classify clean signal 𝑥 and classify 
adversarial perturbation 𝛿 (e.g., find its ℓ&-bounded attack 
family)
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• Idea: Use block-sparse representations of 𝑥 and 𝛿 on 
predefined dictionaries to formulate optimization problem



Sparse Representation-based Classification
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• Find sparse coefficients and corruptions by solving the following 
optimization problem

min
-!,/

||𝑐'||",# + ||𝛿||" 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥! = 𝐷'𝑐' + 𝛿

assumed to be sparse



• Modelling assumption:

• Optimization problem: 

Proposed approach to structured sparse attacks
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• Modelling assumption:

• Optimization problem:

• Challenge: Is this modelling assumption realistic?
– Contribution 1: We theoretically demonstrate that gradient-based test-

time attacks are sparse linear combinations of gradient-based train-time 
attacks

Proposed approach to structured sparse attacks
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• Modelling assumption:

• Optimization problem:

• Challenge: Does solving the above problem provably work?
– Contribution 2: We show geometric recovery guarantees for recovering 

the correct signal and attack class
• Assuming that subspaces are sufficiently separated and atoms of signal and 

attack dictionaries are well-distributed in the subspaces they span

Proposed approach to structured sparse attacks
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• Modelling assumption:

• Optimization problem:

• Challenge: Can we efficiently solve the optimization problem?
– Contribution 3: We develop an efficient active set homotopy algorithm

• Solve sequence of problems restricted to few nonzero blocks of dictionary

Proposed approach to structured sparse attacks
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• We show effectiveness of our approach as a defense against a 
union of different attacks

Experiments: MNIST Dataset



• Modelling: Developed a model for signal and adversarial attack 
classification using a block-sparse modelling assumption

• Validity: Theoretically demonstrated validity of the modelling 
assumption for gradient-based attacks

• Theory: Proved geometric recovery guarantees for correct 
signal and attack recovery

• Efficiency: Developed an efficient algorithm to solve problem in 
practice

Conclusion

Thank you!


