

On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning

Weichao Mao¹, Lin F. Yang², Kaiqing Zhang³, Tamer Başar¹

¹ ECE & CSL, University of Illinois Urbana-Champaign

² ECE, University of California, Los Angeles

³ LIDS, Massachusetts Institute of Technology.

Background

- ▶ Multi-agent reinforcement learning (MARL)
 - ▶ Sequential decision-making problem where a group of agents strategically interact with each other in a shared environment
 - ▶ Cooperative or competitive: Each agent takes actions to maximize its own benefits
 - ▶ Leads to breakthroughs in AI applications: Go, Poker, and real-time strategy games.

(a) Go

(b) Texas hold'em

(c) StarCraft II

Background

- ▶ Multi-agent reinforcement learning (MARL)
 - ▶ Sequential decision-making problem where a group of agents strategically interact with each other in a shared environment
 - ▶ Cooperative or competitive: Each agent takes actions to maximize its own benefits
 - ▶ Leads to breakthroughs in AI applications: Go, Poker, and real-time strategy games.

(a) Go

(b) Texas hold'em

(c) StarCraft II

- ▶ Sample-efficient solutions are lacking
 - ▶ Often suffer from an **exponential sample complexity** dependence on the number of agents. “The curse of multiagents”

Decentralized Learning

- ▶ We consider a more practical setting: decentralized learning
 - ▶ Each agent makes decisions based on only its **local information**, i.e., local action and reward history
 - ▶ Need not communicate with other agents, nor be coordinated by any central controller during training
 - ▶ In fact, can be completely **oblivious** to the presence of other agents

Decentralized Learning

- ▶ We consider a more practical setting: decentralized learning
 - ▶ Each agent makes decisions based on only its **local information**, i.e., local action and reward history
 - ▶ Need not communicate with other agents, nor be coordinated by any central controller during training
 - ▶ In fact, can be completely **oblivious** to the presence of other agents
- ▶ Advantages:
 - ▶ Does not suffer exponential sample & computation complexity
 - ▶ More practical even if communication is expensive or unreliable
 - ▶ Naturally model-free: higher space efficiency, and compatible with deep RL architectures

Contributions

A series of sample-efficient decentralized MARL algorithms:

1. For general-sum Markov games, we propose a stage-based V-learning algorithm that learns an ε -approximate coarse correlated equilibrium (CCE) in $\tilde{O}(H^5 S A_{\max} / \varepsilon^2)$ episodes
 - ▶ Stage-based Q-learning for exploration, and adversarial bandit subroutine for policy update
 - ▶ Circumvents a rather complicated no-weighted-regret bandit subroutine in existing works

Contributions

A series of sample-efficient decentralized MARL algorithms:

1. For general-sum Markov games, we propose a stage-based V-learning algorithm that learns an ε -approximate **coarse correlated equilibrium (CCE)** in $\tilde{O}(H^5SA_{\max}/\varepsilon^2)$ episodes
 - ▶ Stage-based Q-learning for exploration, and adversarial bandit subroutine for policy update
 - ▶ Circumvents a rather complicated no-weighted-regret bandit subroutine in existing works
2. For general-sum Markov games, learns an ε -approximate **correlated equilibrium (CE)** in $\tilde{O}(H^5SA_{\max}^2/\varepsilon^2)$ episodes

Contributions

A series of sample-efficient decentralized MARL algorithms:

1. For general-sum Markov games, we propose a stage-based V-learning algorithm that learns an ε -approximate **coarse correlated equilibrium (CCE)** in $\tilde{O}(H^5SA_{\max}/\varepsilon^2)$ episodes
 - ▶ Stage-based Q-learning for exploration, and adversarial bandit subroutine for policy update
 - ▶ Circumvents a rather complicated no-weighted-regret bandit subroutine in existing works
2. For general-sum Markov games, learns an ε -approximate **correlated equilibrium (CE)** in $\tilde{O}(H^5SA_{\max}^2/\varepsilon^2)$ episodes
3. For **Markov potential games**, an independent policy gradient algorithm with a decentralized momentum-based variance reduction technique for learning **Nash equilibrium (NE)**.

Contributions

A series of sample-efficient decentralized MARL algorithms:

1. For general-sum Markov games, we propose a stage-based V-learning algorithm that learns an ε -approximate coarse correlated equilibrium (CCE) in $\tilde{O}(H^5SA_{\max}/\varepsilon^2)$ episodes
 - ▶ Stage-based Q-learning for exploration, and adversarial bandit subroutine for policy update
 - ▶ Circumvents a rather complicated no-weighted-regret bandit subroutine in existing works
2. For general-sum Markov games, learns an ε -approximate correlated equilibrium (CE) in $\tilde{O}(H^5SA_{\max}^2/\varepsilon^2)$ episodes
3. For Markov potential games, an independent policy gradient algorithm with a decentralized momentum-based variance reduction technique for learning Nash equilibrium (NE).
4. Numerical simulations corroborate our theoretical findings