\mathcal{G} -Mixup: Graph Data Augmentation for Graph Classification

Xiaotian Han¹, Zhimeng Jiang¹, Ninghao Liu², Xia Hu³

¹Texas A&M University. ²University of Georgia. ³Rice University

G-Mixup 1/16

- Background and Motivation
- 2 Methodology
 - G-Mixup
 - Implementation
- 3 Experiments
 - Verification Experiments
 - Performance Experiments

- Background and Motivation
- Methodology
 - G-Mixup
 - Implementation
- Experiments
 - Verification Experiments
 - Performance Experiments

 \mathcal{G} -Mixup 3 / 16

Mixup

Mixup is a cross-instance data augmentation method, which linearly interpolates random sample pair to generate more synthetic training data.

$$\mathbf{x}_{new} = \lambda \mathbf{x}_i + (1 - \lambda) \mathbf{x}_j,$$

$$\mathbf{y}_{new} = \lambda \mathbf{y}_i + (1 - \lambda) \mathbf{y}_j,$$

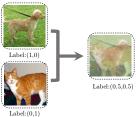


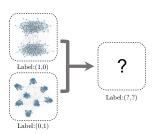
where $(\mathbf{x}_i, \mathbf{y}_i)$, $(\mathbf{x}_j, \mathbf{y}_j)$ are two samples randomly drawn from training data.

Mixup have been empirically and theoretically shown to improve the generalization and robustness of deep neural networks (H. Zhang et al., 2017; L. Zhang et al., 2021).

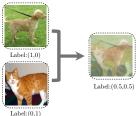
Can we mix up input graph pair to improve graph neural networks?

Graph data is different from image data:

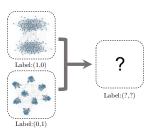




Graph data is different from image data:

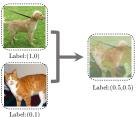


• Image data is regular (image can be represented as matrix)

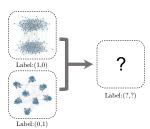


Graph data is irregular (the number of nodes)

Graph data is different from image data:

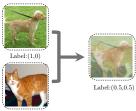


- Image data is regular (image can be represented as matrix)
- Image data is well-aligned (pixel to pixel correspondence)

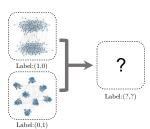


- Graph data is irregular (the number of nodes)
- ② Graph data is not well-aligned (nodes not naturally ordered)

Graph data is different from image data:

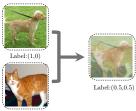


- Image data is regular (image can be represented as matrix)
- Image data is well-aligned (pixel to pixel correspondence)
- Image data is grid-like data

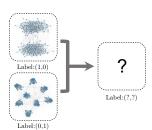


- Graph data is irregular (the number of nodes)
- ② Graph data is not well-aligned (nodes not naturally ordered)
- Graph has divergent topology information

Graph data is different from image data:



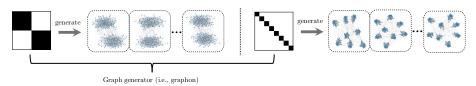
- Image data is regular (image can be represented as matrix)
- Image data is well-aligned (pixel to pixel correspondence)
- Image data is grid-like data
- Image is in Euclidean space



- Graph data is irregular (the number of nodes)
- ② Graph data is not well-aligned (nodes not naturally ordered)
- Graph has divergent topology information
- Graph is in non-Euclidean space

Graph Generator: Graphon

The real-world graphs can be regarded as generated from generator (i.e., $graphon^{1}$). For example,



The graphons of different graphs are regular, well-aligned, and in Euclidean space.

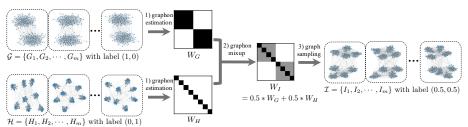
We propose to mix up graph generator (i.e., graphon) to achieve the input graph mixup.

¹For ease of exposition, we use step function as grpahon in the following.

- Background and Motivation
- 2 Methodology
 - G-Mixup
 - Implementation
- 3 Experiments
 - Verification Experiments
 - Performance Experiments

\mathcal{G} -Mixup

We propose to mixup the generator (i.e., graphon) of graphs, mix up the graphons of different classes, and then generate synthetic graphs.



The formal mathematical expression are as follows:

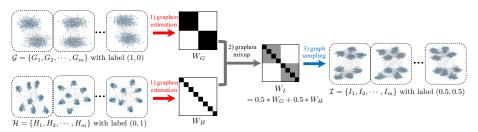
(1) Graphon Estimation:
$$\mathcal{G} \to W_{\mathcal{G}}, \mathcal{H} \to W_{\mathcal{H}}$$

(2) Graphon Mixup:
$$W_{\mathcal{I}} = \lambda W_{\mathcal{G}} + (1 - \lambda)W_{\mathcal{H}}$$

(3) Graph Generation:
$$\{I_1, I_2, \cdots, I_m\} \stackrel{\text{i.i.d}}{\sim} \mathbb{G}(K, W_{\mathcal{I}})$$

(4) Label Mixup:
$$\mathbf{y}_{\mathcal{I}} = \lambda \mathbf{y}_{\mathcal{G}} + (1 - \lambda) \mathbf{y}_{\mathcal{H}}$$

Implementation



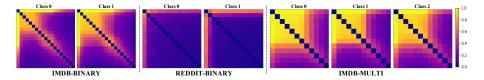
- **1** Graphon Estimation. We use the step function (Lovász, 2012; Xu et al., 2021) to approximate graphons. In general, the step function can be seen as a matrix $\mathbf{W} = [w_{kk'}] \in [0,1]^{K \times K}$, where \mathbf{W}_{ij} is the probability that an edge exists between node i and node j.
- **2** Synthetic Graphs Generation. Generates an adjacency matrix $\mathbf{A} = [a_{ij}] \in \{0,1\}^{K \times K}$, whose element values follow the Bernoulli distributions (\cdot) determined by the step function.

- Background and Motivation
- Methodology
 - G-Mixup
 - Implementation
- 3 Experiments
 - Verification Experiments
 - Performance Experiments

G-Mixup 10 / 16

Do different classes of graphs have different graphons?

We visualize the estimated graphons on IMDB-BINARY, REDDIT-BINARY, and IMDB-MULTI.



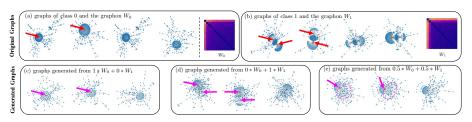
We make the following observations:

- Real-world graphs of different classes have different graphons.
- This observation lays a solid foundation for our proposed method.

G-Mixup 11 / 16

What is G-Mixup doing? A case study

We visualize the generated synthetic graphs on REDDIT-BINARY dataset.



We make the following observations:

- The class 0 has one high-degree node while class 1 have two (a)(b).
- The generated graphs based on
 - $(1*W_0+0*W_1)$ have one high-degree node (c).
 - $(0*W_0+1*W_1)$ have two high-degree nodes (d).
 - $(0.5*W_0 + 0.5*W_1)$ have a high-degree node and a dense subgraph (e).

3 Graphs generated by \mathcal{G} -Mixup are the mixture of original graphs.

G-Mixup 12 / 16

Can G-Mixup improve the performance of GNNs?

We use different GNNs for graph classification and report the performance comparisons of $\mathcal{G}\textsc{-Mixup}$.

Dataset	IMDB-B	IMDB-M	REDD-B	REDD-M5	REDD-M12
#graphs	1000	1500	2000	4999	11929
#classes	2	3	2	5	11
#avg.nodes	19.77	13.00	429.63	508.52	391.41
#avg.edges	96.53	65.94	497.75	594.87	456.89
_ vanilla	72.18	48.79	78.82	45.07	46.90
w/ Dropedge	72.50	49.08	81.25	51.35	47.08
w/ DropNode	72.00	48.58	79.25	49.35	47.93
w/ Subgraph	68.50	49.58	74.33	48.70	47.49
w/ M-Mixup	72.83	49.50	75.75	49.82	46.92
w/ G-Mixup	72.87	51.30	89.81	51.51	48.06
vanilla	71.55	48.83	92.59	55.19	50.23
≧ w/ Dropedge	72.20	48.83	92.00	55.10	49.77
w/ DropNode	72.16	48.33	90.25	53.26	49.95
w/ Subgraph	68.50	47.25	90.33	54.60	49.67
w/ M-Mixup	70.83	49.88	90.75	54.95	49.81
w/ G-Mixup	71.94	50.46	92.90	55.49	50.50

Method	IMDB-B	IMDB-M	REDD-B	REDD-M5k
o vanilla	72.37	50.57	90.30	45.07
⊕ w/ Dropedge	71.75	48.75	88.96	47.43
₹ w/ DropNode	69.16	48.50	81.33	46.15
	67.83	50.83	86.08	45.75
w/ M-Mixup	71.83	51.22	87.58	45.60
w/ G-Mixup	72.80	51.30	90.40	46.48
o vanilla	71.68	47.75	78.40	31.61
w/ Dropedge	69.16	49.44	76.00	34.46
	70.25	46.83	76.68	33.10
w/ Subgraph	69.50	46.00	76.06	31.65
w/ M-Mixup	66.50	45.16	78.37	34.46
w/ G-Mixup	73.25	50.70	78.87	38.42
8 vanilla	73.25	49.04	84.95	49.32
⊕ w/ Dropedge	69.16	49.66	81.37	47.20
∃ w/ DropNode	73.50	49.91	85.68	46.82
€ w/ Subgraph	70.25	48.18	84.91	49.22
≥ w/ M-Mixup	70.62	49.96	85.12	47.20
w/ G-Mixup	73.93	50.29	85.87	50.12

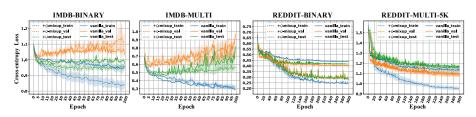
We make the following observation:

 $oldsymbol{0}$ \mathcal{G} -Mixup can improve the performance of GNNs on various datasets.

G-Mixup 13 / 16

Can G-Mixup improve the performance of GNNs?

We present the training/validation/test curves on IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY and REDDIT-MULTI-5K with GCN.



We make the following observations:

- **1** The loss curves of \mathcal{G} -Mixup are lower than the vanilla model.
- $\circled{\mathcal{G}}$ -Mixup can improve the generalization of graph neural networks.

G-Mixup 14 / 16

References I

- Lovász, L. (2012). Large networks and graph limits (Vol. 60). American Mathematical Soc.
- Xu, H., Luo, D., Carin, L., & Zha, H. (2021). Learning graphons via structured gromov-wasserstein barycenters. Proceedings of the AAAI Conference on Artificial Intelligence, 10505–10513.
- Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). Mixup: Beyond empirical risk minimization.

 International Conference on Learning Representations.
- Zhang, L., Deng, Z., Kawaguchi, K., Ghorbani, A., & Zou, J. (2021). How does mixup help with robustness and generalization? *International Conference on Learning Representations*.

G-Mixup: Graph Data Augmentation for Graph Classification

Xiaotian ${\sf Han^1}$, Zhimeng ${\sf Jiang^1}$, Ninghao ${\sf Liu^2}$, Xia ${\sf Hu^3}$ ${}^1{\sf Texas}$ A&M University, ${}^2{\sf University}$ of Georgia, ${}^3{\sf Rice}$ University

Q&A

G-Mixup 16 / 16