
21 3 4 5

Going Deeper into Permutation-Sensitive
Graph Neural Networks

Zhongyu Huang1,2, Yingheng Wang3,4, Chaozhuo Li5, Huiguang He1,2

1

23

v

x1

x3 x2

av = f (x1, x2, x3) = x1 + x2 + x3

01 Introduction of Permutation-Invariance

Permutation-invariance: permutation of the nodes of the input graph does not

affect the output.

For invariant aggregators such as SUM, we have ordering-invariance:

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥2) = 𝑓𝑓(𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥3) = 𝑓𝑓(𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥1) =

𝑓𝑓(𝑥𝑥3, 𝑥𝑥1, 𝑥𝑥2) = 𝑓𝑓(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1) = 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3

and label-invariance:

2

31

v

x2

x1 x3

3

12

v

x3

x2 x1

3

21

v

x3

x1 x2

1

23

v

x1

x3 x2

1

32

v

x1

x2 x3

2

13

v

x2

x3 x1

= = = = =

02 Limitation of Permutation-Invariance

The real graph structure:

1

23

v

x1

x3 x2

u1 u3 u5

u2 u6u4

v1

v2

v3 v4

v5

v6

Thus fail to distinguish:

1

23

v

x1

x3 x2

What permutation-invariant

aggregators can see:

equal statuses

They ignore the relationships among neighboring nodes.

03 More Powerful Permutation-Sensitive Aggregators

Breaking the symmetry

of invariant aggregators:

1

23

v

x1

x3 x2

1

23

v

x1

x3 x2

equal statuses
no connection

weak dependency

BREAK

u1 u3 u5

u2 u6u4

v1

v2

v3 v4

v5

v6

Thus can distinguish:What permutation-sensitive

aggregators can see:

They can count the graph substructures such as triangles.

04 Limitation of Permutation-Sensitivity

For sensitive aggregators, they need to cover all 𝑛𝑛! possible permutations

(node orderings) to guarantee the permutation-invariance of GNNs,

such as ordering-invariance:

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) + 𝑓𝑓(𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥2) + 𝑓𝑓(𝑥𝑥2, 𝑥𝑥1, 𝑥𝑥3) + 𝑓𝑓(𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥1) +

𝑓𝑓(𝑥𝑥3, 𝑥𝑥1, 𝑥𝑥2) + 𝑓𝑓(𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥1) → overall invariant to {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3}

and label-invariance:

1

23

v

x1

x3 x2

av = f (x1, x2, x3)

1

23

v

x1

x3 x2

1

32

v

x1

x2 x3

2

13

v

x2

x3 x1

2

31

v

x2

x1 x3

3

12

v

x3

x2 x1

3

21

v

x3

x1 x2

+ + + + +

05 Core Ideas of Reducing Complexity

Approximate the permutation-invariance: Avoid (𝑛𝑛!)

Model all 2-ary dependencies (pairwise correlations) to ensure the invariance to

2-ary dependencies and thus approximate the permutation-invariance (invariance

to 𝑛𝑛-ary dependencies): From (𝑛𝑛!) to  𝑛𝑛2

• Full 2-ary dependencies can also capture whether

any two neighbors are connected, helping count

substructures and improve the expressive power.

Devise a permutation sampling strategy to minimize the

complexity of covering all 2-ary deps: From (𝑛𝑛2) to (𝑛𝑛)

5

1

2

34

v

2-ary dependency

06 Permutation Sampling Strategy

Graph topology:

5

1

2

34

unknown relationships
(to be modeled)

v
Scan me

for a full demo

06 Permutation Sampling Strategy

Initial permutation:

RNN (𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑢𝑢1)

1

2

34

5

2-ary dependency

Hamiltonian
cycle

Scan me
for a full demo

06 Permutation Sampling Strategy

Generate a new permutation:

RNN (𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑢𝑢1)

𝑢𝑢4 𝑢𝑢2 𝑢𝑢5 𝑢𝑢3 𝑢𝑢1)RNN (𝑢𝑢1+

a b c d e

Permutation diagram

1

2

34

5

Scan me
for a full demo

06 Permutation Sampling Strategy

Reverse the permutation:

RNN (𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑢𝑢1)

𝑢𝑢4 𝑢𝑢2 𝑢𝑢5 𝑢𝑢3 𝑢𝑢1)RNN (𝑢𝑢1+

a b c d e

Permutation diagram

𝑢𝑢5 𝑢𝑢4 𝑢𝑢3 𝑢𝑢2 𝑢𝑢1)RNN (𝑢𝑢1+

1

2

34

5

Scan me
for a full demo

06 Permutation Sampling Strategy

Bi-directional transformation:

RNN (𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑢𝑢1)

𝑢𝑢4 𝑢𝑢2 𝑢𝑢5 𝑢𝑢3 𝑢𝑢1)RNN (𝑢𝑢1+

a b c d e

Permutation diagram

𝑢𝑢5 𝑢𝑢4 𝑢𝑢3 𝑢𝑢2 𝑢𝑢1)RNN (𝑢𝑢1+

1

2

34

5

Scan me
for a full demo

06 Permutation Sampling Strategy

Reverse the permutation:

RNN (𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑢𝑢1)

𝑢𝑢4 𝑢𝑢2 𝑢𝑢5 𝑢𝑢3 𝑢𝑢1)RNN (𝑢𝑢1+

a b c d e

Permutation diagram

𝑢𝑢5 𝑢𝑢4 𝑢𝑢3 𝑢𝑢2 𝑢𝑢1)RNN (𝑢𝑢1+

𝑢𝑢3 𝑢𝑢5 𝑢𝑢2 𝑢𝑢4 𝑢𝑢1)RNN (𝑢𝑢1+

1

2

34

5

Scan me
for a full demo

06 Permutation Sampling Strategy

Bi-directional transformation:

RNN (𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑢𝑢1)

𝑢𝑢4 𝑢𝑢2 𝑢𝑢5 𝑢𝑢3 𝑢𝑢1)RNN (𝑢𝑢1+

a b c d e

Permutation diagram

𝑢𝑢5 𝑢𝑢4 𝑢𝑢3 𝑢𝑢2 𝑢𝑢1)RNN (𝑢𝑢1+

𝑢𝑢3 𝑢𝑢5 𝑢𝑢2 𝑢𝑢4 𝑢𝑢1)RNN (𝑢𝑢1+

1

2

34

5

Scan me
for a full demo

07 Experimental Datasets

ZINCMINST

PROTEINS COLLABNCI1 IMDB

08 Experimental Results on TUDataset

Model PROTEINS NCI1 IMDB-B IMDB-M COLLAB

WL 75.0 ± 3.1 86.0 ± 1.8 73.8 ± 3.9 50.9 ± 3.8 78.9 ± 1.9
DGCNN 75.5 ± 0.9 74.4 ± 0.5 70.0 ± 0.9 47.8 ± 0.9 73.8 ± 0.5
IGN 76.6 ± 5.5 74.3 ± 2.7 72.0 ± 5.5 48.7 ± 3.4 78.4 ± 2.5
GIN 76.2 ± 2.8 82.7 ± 1.7 75.1 ± 5.1 52.3 ± 2.8 80.2 ± 1.9
PPGN 77.2 ± 4.7 83.2 ± 1.1 73.0 ± 5.8 50.5 ± 3.6 80.7 ± 1.7
CLIP 77.1 ± 4.4 N/A 76.0 ± 2.7 52.5 ± 3.0 N/A
WEGL 76.5 ± 4.2 N/A 75.4 ± 5.0 52.3 ± 2.9 80.6 ± 2.0
SIN 76.5 ± 3.4 82.8 ± 2.2 75.6 ± 3.2 52.5 ± 3.0 N/A
CIN 77.0 ± 4.3 83.6 ± 1.4 75.6 ± 3.7 52.7 ± 3.1 N/A

PG-GNN (Ours) 76.8 ± 3.8 82.8 ± 1.3 76.8 ± 2.6 53.2 ± 3.6 80.9 ± 0.8

09 Experimental Results on Benchmark Dataset

Model
MNIST ZINC

Accuracy ↑ Time / Epoch MAE ↓ Time / Epoch
GraphSAGE 97.31 ± 0.10 113.12s 0.468 ± 0.003 3.74s
GatedGCN 97.34 ± 0.14 128.79s 0.435 ± 0.011 5.76s
GIN 96.49 ± 0.25 39.22s 0.387 ± 0.015 2.29s
3-WL-GNN 95.08 ± 0.96 1523.20s 0.407 ± 0.028 286.23s
Ring-GNN 91.86 ± 0.45 2575.99s 0.512 ± 0.023 327.65s
PPGN N/A N/A 0.256 ± 0.054 334.69s
Deep-LRP N/A N/A 0.223 ± 0.008 72s
PNA 97.41 ± 0.16 N/A 0.320 ± 0.032 N/A

PG-GNN (Ours) 97.51 ± 0.07 82.60s 0.282 ± 0.011 6.92s

10 Conclusions

• Permutation-sensitive GNNs are more powerful than permutation-invariant

ones since they are capable of modeling the relationships among neighboring

nodes and thus counting graph substructures.

• A good approximation of the permutation-invariance (e.g., the invariance to

2-ary dependencies) can significantly reduce the computational complexity

with a minimal loss of generalization capability.

• The proposed permutation sampling strategy achieves linear permutation

sampling complexity and is promising to be incorporated into broader design.

Preprint link: https://arxiv.org/abs/2205.14368

Code link: https://github.com/zhongyu1998/PG-GNN

Contact: huangzhongyu2020@ia.ac.cn (Zhongyu Huang)
huiguang.he@ia.ac.cn (Huiguang He)

Going Deeper into Permutation-Sensitive
Graph Neural Networks

