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» Federated RL (TD) algorithms

1. No linear speedup [Wai '20] [Zeng, Doan, Romberg, 20]
O In fact, they have linear penalty — but their focus is different
2. Linear speed up under i.i.d. noise assumption [Shen, Zhang, Hong, Chen ‘20]
L Based on experiments, conjectured that linear speedup is possible under

Markov noise too
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