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Quantum Machine Learning

> Inrecent years, quantum algorithms for various ML problems have been
proposed.

[HHLoO9] sparse matrix inversion

[LGZ16] topological data analysis

[WBL12] data fitting

[LMB14] principal compenent analysis

[RML14] support vector machine

[KP17] recommendation system

[BKL+19] semidefinite programming
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Quantum Machine Learning

> Some of these algorithms have the striking property that their running

times do not depend on the input size
> That is, for a given matrix A, the running times for these proposed

quantum algorithms are at most polylogarithmic in n and d, and
polynomial in other parameters of 4, such as rank(4),x(4), ||A| |F.

> Question: Is actual speed up

exponential /high polynomial /quadratic?



Quantum-Inspired Model

> QObeservation in [Tan19]: these quantum algorithms depend on a
particular input representation of A, which is a strong assumption.

> (Classical algorithms without corresponding assumptions are
underpowered.

> A number of works study the de-quantizing QML problems in the

quamtum-inspired model, as a classical analogue to state preparation.
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Quantum-Inspired Model

> Matrix-based data-structure, SQ(A)
O SAMPLE1(): samples a row based on the £, norm of the rows.
O SAMPLE 2(i): takes a row index and sample the column entry based on their squared
values
O Query(i,j): outputs A;;
O Norm(i): outputs the norm of the i-th row
O Norm(): outputs the norm of the Frobenius norm of A
> Note: such dynamic data structure can be implemented in O (log(nd))
time in classical setting, which only increases runtime by a logarithmic

factor. See [Tan19, GST20]



Quantum-Inspired Model

> Matrix-based data-structure, SQ(A).
> [GST20]: () ( 1Al|R(A)2 ) query time algorithms for linear

(09 . 1)

min

regression
> [Tan19]: $2(poly(kke -1 n)) query time algorithms for low-rank
approximation.
> Both algorithms runs in time independent of dimensions.
> Actually shows that previous quantum algorithms do not give an

exponential speedup



Quantum-Inspired Model

> Matrix-based data-structure, SQ(A).
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> [GST20]: (O ( \|?||g i (‘f))Q ) query time algorithms for linear
g g

min

regression
> [Tan19]: () (poly(lﬁzke_l n)) query time algorithms.
> (Question:
Can the sublinear terms in the running time be reduced

significantly?



Our Results

Problem Time Prior Work
Update Query Update Query
Ridge ~ (d'&3All% log(d ~ /15 Al6 16
Regression O(log(n)) O( £4|||£||§g( )) O(log(n)) | O (—” S'LF )
Thm. 4 [GLT18]
~ A 8 (A 2
0 (LoEr)
|[GST20)]
1A% | 2
Sampling O(log(n)) O( ( TV ) + 51 | O(log(n)) | Q(poly(kke™'n))
Thm. 5 [Tan19]




High Level Intuition

> QObservation: the reason the quantum-inspired literature obtains all of
these matrix-dependent parameters is because such parameters relate
squared-length sampling to leverage score sampling. But the previous
works do not utilize this well.

> The algorithms build data structures for sampling according to the
squared row and column lengths of a matrix.

> Is well-known that leverage score sampling often gives stronger
guarantees. Writing A = UXV7 in its singular value decomposition (SVD).

The i-th leverage score of 4 is the |U;]|3.



High Level Intuition

> Writing A = UXVT in its singular value decomposition (SVD). The i-th
leverage score of A is the |U;]3.

> |4;13 = 62,;,1U;13 and |4;13 < 624,]U;|3. The two ways are with ratio

2
distance at most x(4)? = 2nex

min
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> If we oversample by a factor of x(4)?, we can get the same guarantee.



High Level Intuition

> [GST20]: () (HAH%R(A)Z)

(O-?nin84)

> |GLT18]: ~ [ 1.6]| A6 16
| ] O (k- ||A€\ L 6 K )

> The previous analysis of algorithms are actually implicitly doing leverage
score sampling, or in the case of ridge regression, ridge leverage score
sampling.

> We show how to obtain simpler algorithms and analysis by using existing

techniques in the literature of randomized numerical linear algebra.



Experiments

> Low-Rank Approximation on two real-world dataset: KOS and

MovieLens 100K
> Compare to [ADBL20], a implementation of the previous quantum-

inspired algorithms.



Experiments

k=10 | k=15 | k=20 k=10 | k=15 | k=20
£(Ours) 0.0416 | 0.0557 | 0.0653 e(Ours) 0.0397 | 0.0478 | 0.0581
=(ADBL) | 0.0262 | 0.0424 | 0.0533 =(ADBL) | 0.0186 | 0.0295 | 0.0350
Runtime Runtime
(Ours, Query) 0.125s | 0.131s | 0.135s (Ours, Query) 0.292s | 0.296s | 0.295s
Runtime Runtime
(Ours, Total) 0.181s | 0.183s | 0.184s (Ours, Total) 0.45% | 0.455s | 0.459s
Runtime Runtime
(ADBL, Query) 0.867s | 0.913s | 1.024s (ADBL, Query) 1.501s | 1.643s | 1.580s
Runtime Runtime
(ADBL, Total) 0.968s | 1.003s | 1.099s (ADBL, Total) 1.814s | 1.958s | 1.897s
Runtime of SVD 2.500s Runtime of SVD 36.738s

> See our papers for the results for the ridge regression.




