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Quantum Machine Learning

➢ In recent years, quantum algorithms for various ML problems have been 

proposed.

○ [HHL09] sparse matrix inversion

○ [LGZ16] topological data analysis

○ [WBL12] data fitting

○ [LMB14] principal compenent analysis 

○ [RML14] support vector machine

○ [KP17] recommendation system

○ [BKL+19] semidefinite programming

○ ... 



Quantum Machine Learning

➢ Some of these algorithms have the striking property that their running 

times do not depend on the input size

➢ That is, for a given matrix 𝐴, the running times for these proposed 

quantum algorithms are at most polylogarithmic in 𝑛 and 𝑑, and 

polynomial in other parameters of 𝐴, such as 𝑟𝑎𝑛𝑘 𝐴 , κ 𝐴 , 𝐴
𝐹
.

➢ Question: Is actual speed up 

exponential/high polynomial/quadratic?



Quantum-Inspired Model

➢ Obeservation in [Tan19]: these quantum algorithms depend on a 

particular input representation of 𝐴, which is a strong assumption.

➢ Classical algorithms without corresponding assumptions are 

underpowered.

➢ A number of works study the de-quantizing QML problems in the 

quamtum-inspired model, as a classical analogue to state preparation.
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Quantum-Inspired Model

➢ Matrix-based data-structure, SQ(A)

○ SAMPLE1(): samples a row based on the ℓ2 norm of the rows.

○ SAMPLE 2(𝑖): takes a row index and sample the column entry based on their squared 

values

○ Query(𝑖, 𝑗): outputs 𝐴𝑖𝑗

○ Norm(𝑖): outputs the norm of the 𝑖-th row

○ Norm(): outputs the norm of the Frobenius norm of 𝐴

➢ Note: such dynamic data structure can be implemented in 𝑂(log(𝑛𝑑))

time in classical setting, which only increases runtime by a logarithmic 

factor. See [Tan19, GST20]



Quantum-Inspired Model

➢ Matrix-based data-structure, SQ(A).

➢ [GST20]:                                      query time algorithms for linear 

regression

➢ [Tan19]:                                          query time algorithms for low-rank 

approximation.

➢ Both algorithms runs in time independent of dimensions. 

➢ Actually shows that previous quantum algorithms do not give an 

exponential speedup



Quantum-Inspired Model

➢ Matrix-based data-structure, SQ(A).

➢ [GST20]:                                      query time algorithms for linear 

regression

➢ [Tan19]:                                          query time algorithms.

➢ Question: 

Can the sublinear terms in the running time be reduced 

significantly?



Our Results 



High Level Intuition 

➢ Observation: the reason the quantum-inspired literature obtains all of 

these matrix-dependent parameters is because such parameters relate 

squared-length sampling to leverage score sampling. But the previous

works do not utilize this well.

➢ The algorithms build data structures for sampling according to the 

squared row and column lengths of a matrix.

➢ Is well-known that leverage score sampling often gives stronger 

guarantees. Writing 𝐴 = 𝑈Σ𝑉𝑇 in its singular value decomposition (SVD). 

The 𝑖-th leverage score of 𝐴 is the 𝑈𝑖 2
2.
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➢ If we oversample by a factor of 𝜅 𝐴 2, we can get the same guarantee.



High Level Intuition 

➢ [GST20]:

➢ [GLT18]:

➢ The previous analysis of algorithms are actually implicitly doing leverage 

score sampling, or in the case of ridge regression, ridge leverage score 

sampling.

➢ We show how to obtain simpler algorithms and analysis by using existing 

techniques in the literature of randomized numerical linear algebra.



Experiments

➢ Low-Rank Approximation on two real-world dataset: KOS and 

MovieLens 100K

➢ Compare to [ADBL20], a implementation of the previous quantum-

inspired algorithms.



Experiments

➢ See our papers for the results for the ridge regression.


