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The Task of OOD Detection
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The Task of OOD Detection

Model f (x;0)

Trained on 1n-distribution data



The Task of OOD Detection

Model f (x;0)

Based on the model
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S: Scoring function

Trained on 1n-distribution data



OOD Detection with Outlier Exposure

» Motivation: modern neural networks tend to be over-confident for OOD inputs
(Due to limited supervision with only ID data during training)
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» Motivation: modern neural networks tend to be over-confident for OOD inputs
(Due to limited supervision with only ID data during training)
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» Challenge: the space of potential OOD data can be extremely large for high-dim feature space



OOD Detection with Outlier Exposure

» Motivation: modern neural networks tend to be over-confident for OOD inputs
(Due to limited supervision with only ID data during training)
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» Challenge: the space of potential OOD data 1s extremely large for high-dim feature space

» Requirement: data-efficient solution to learn a compact ID-OOD decision boundary



[llustration of Outlier Mining

» Outlier Mining: to identify the most informative outlier samples close to
the ID-OOD boundary
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[llustration of Outlier Mining

» Outlier Mining: to identify the most informative outlier samples close to
the ID-OOD boundary
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Outlier Mining: A Thompson Sampling View (informally)

» Our main novelty: framing outlier mining as a sequential decision making problem:
» Objective: to 1dentify most informative outliers (1.e., close to the unknown ID-OOD boundary)
» At each timestep,
» Action: outlier selection
» Reward: based on the closeness to the unknown ID-OOD boundary

» To summarize, finding outliers close to the boundary given an auxiliary set

— can be formulated as optimizing an unknown function by selecting samples

» Exploration vs. exploitation trade-off 1s crucial for efficient optimization!

— Thompson Sampling (sampling from posterior distribution to take action)



Outlier Mining: A Thompson Sampling View (formally)

» TS for outlier mining: maintaining and modeling the distribution of w*, and using this
model to select near-boundary outliers over time via posterior sampling

» At each step ¢, the model parameter w' is sampled from the posterior distribution of

w*, then the learner takes an action a, by choosing outlier X ~ &,,,x that maximize
the estimated boundary score (to be defined next) according to w,

Algorithm 1 Outlier Mining via Thompson Sampling

Input: A prior distribution F,)¥ over w.

for stept=0,1,--- ,7" do
Sample w; ~ P.".
Take action a; by choosing outliers x ~ P,,x based on
the sampled model w;.
Receive some reward G(x).
Update the posterior distribution P ; for model.
end for




Outlier Mining: Boundary Score

» Q: How to measure the distance to the boundary for outlier samples?
-

Sigmoid function

» Modeling Boundary Score: G(X) = — | foutlier(X; W¥) |

» foutlier 18 @ function parameterized by w* that maps input X \ /o />foumer
O

to the logit space: p(outlier | X) = Sigmoid(fyy¢lier(X; W*)) utliers

Informative

» Near-boundary outliers correspond to | foutljer(Xs W*) | = 0 n-cistBHion outliers

(b) Boundary Score & Density



Outlier Mining: Insights for Boundary Score

» Intuitively, outliers with the highest boundary scores are

more desirable for model regularization to learn a compact
ID-OOD boundary

» Theoretically, we show that outliers with high boundary
scores benefit sample complexity for OOD detection:

» (Informal version of Thm 6.1) We show that FPR 1s a
decreasing function of the average boundary score of the
selected outlier under Gaussian mixture assumptions

pA

Sigmoid function

' /0 > foutlier
Outliers

Informative
outliers

In-distribution

(b) Boundary Score & Density



Outlier Mining: Estimating Boundary Score

» Recall G(X) = — | foutlierX; W) |, w* is unknown

» Given any X labeled as OOD/ID, we can infer a target logit y¢, as
an approximate target value of f,,¢jer(X; W*)

pA

Sigmoid function
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(b) Boundary Score & Density



Outlier Mining: Estimating Boundary Score

pA

» Recall G(X) = — | foutlierX; W) |, w* is unknown

Sigmoid function

» Given any X labeled as OOD/ID, we can infer a target logit y¢, as :

an approximate target value of f,,¢jer(X; W*) \ ]o /»foumer
Outliers

» Q: how to find the most informative outliers?

Informative

In-distribution outliers

» Use the approximate target value to build a regression model with () Boundary Score & Density
uncertainty measurement
— Choose outliers close to the sampled decision boundary via TS



Outlier Mining: Modeling f,,¢ier With Neural Networks

» We perform Bayesian linear regression (BLR) on top of the penultimate layer as
feature ¢(Xx) of a deep neural network to model the boundary score:

» At each timestep, estimate foutlier(X; W) = W, ! ¢(X)



Outlier Mining: Modeling f,,¢ier With Neural Networks

» We perform Bayesian linear regression (BLR) on top of the penultimate layer as
feature ¢(Xx) of a deep neural network to model the boundary score:

» At each timestep, estimate foutlier(X; W) = W, ! ¢(X)

» To get w,, maintain and update the posterior distribution of w*:
» Build a Gaussian prior of w, ~ 4/(0,X)

, Sample wy ~ N (0_221_)1(1)3’&11*» Zﬁl)

) Zp = 6 2PP" + X! posterior covariance matrix

» @: concatenation of feature representations { ¢(X:) }

» Yiqp: CcOncatenation of target logit values

» 6% variance of i.i.d. noises for target logit values



Outlier Mining: Modeling f,t[iter With Neural Networks

» We perform Bayesian linear regression (BLR) on top of the penultimate layer
feature ¢(Xx) of a deep neural network to model the boundary score:

» At each timestep, estimate foutlier(X; W) = W, ! ¢(X)

» To get w,, maintain and update the posterior distribution of w*:
» Build a Gaussian prior of w, ~ 4/(0,X)

, Sample wy ~ N (0_221_)1(1)3’&11*» Zﬁl)

) Zp = 6 2PP" + X! posterior covariance matrix

» @: concatenation of feature representations { ¢(X:) }
» Yiqp: CcOncatenation of target logit values

» 6% variance of i.i.d. noises for target logit values

» TS with BLR 1s a good trade-off between computational tractability and OOD
detectability



Putting Together: Framework Overview
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POEM.: Posterior Sampling-based Outlier Mining



Putting Together: Training and Inference

»Training loops:

» Step 1: Constructing an auxiliary outlier training set by selecting outliers with the
highest sampled boundary scores from a large candidate pool

» Step 2: The classification branch, together with the network backbone are trained using
a mixture of ID and selected outlier data with energy regularization (Liu et al. [1])

» Step 3: Based on the updated feature representation, we pertorm the posterior update
of the weights 1n the outlier mining branch



Putting Together: Training and Inference

»Training loops:

» Step 1: Constructing an auxiliary outlier training set by selecting outliers with the
highest sampled boundary scores from a large candidate pool

» Step 2: The classification branch together with the network backbone are trained using
a mixture of ID and selected outlier data with energy regularization (Liu et al. [1])

» Step 3: Based on the updated feature representation, we pertorm the posterior update
of the weights 1n the outlier mining branch

»Inference:

» At test time, OOD detection 1s based on the energy of the input:
D;(x) = 1{—E(X) = 7}

» Remark: threshold y 1s typically chosen so that a high fraction of ID data (e.g., 95%) 1s correctly classified



Experimental Setup

Datasets
» ID datasets:

» CIDER-10 and CIFAR-100
» Auxiliary outlier dataset:
» ImageNet-RC (Chrabaszcz et al.) [2], a downsampled version of ImageNetlK
» OOD test sets:
»SVHN (Netzer et al.) [3], Textures (Cimpoi et al.) [4], Places365 (Zhou et al.) [5]. LSUN-crop,
LSUN-resize (Yu et al.) [6],1SUN (Xu et al.) [7]

Evaluation Metrics

» FPRO35: the false positive rate (of OOD samples) when the true positive rate of ID samples 1s at 95%
» AUROC: the area under the receiver operating characteristic curve
» AUPR: the area under the precision-recall curve

» ID-ACC: ID classification accuracy.



Main Results: Overview

Dy Method FPR9S| AUROCtT AUPR?T ID-ACC w./w.0. D,x  Sampling Method

MSP (Hendrycks & Gimpel, 2017) 58.98 90.63 93.18 94.39 X NA
ODIN (Liang et al., 2018) 26.55 94.25 95.34 94.39 X NA
Mahalanobis (Lee et al., 2018b) 29.47 89.96 89.70 94.39 X NA
Energy (Liu et al., 2020) 28.53 94.39 95.56 94.39 X NA

CIFAR-10 SSD+ (Sehwag et al., 2021) 7.22 98.48 98.59 NA X NA
OE (Hendrycks et al., 2018) 9.66 98.34 98.55 94.12 v random
SOFL (Mohseni et al., 2020) 541 08.98 99.10 03.68 v random
CCU (Meinke & Hein, 2020) 8.78 98.41 98.69 93.97 v random
NTOM (Chen et al., 2021) 4.38 99.08 99.24 94.11 v greedy
Energy (w. D.,.) (Liu et al., 2020)  4.62 08.93 99.12 92.92 v random

v Thompson
Observations:

« POEM achieves SOTA OOD detection performance and maintains comparable ID classification accuracy



POEM Outpertorms Other OE-based Methods

Dy Method FPRY95| AUROCT AUPR?T ID-ACC w./w.0. D,x  Sampling Method

MSP (Hendrycks & Gimpel, 2017) 58.98 90.63 93.18 94.39 X NA
ODIN (Liang et al., 2018) 26.55 94.25 95.34 94.39 X NA
Mahalanobis (Lee et al., 2018b) 29.47 89.96 89.70 94.39 X NA
Energy (Liu et al., 2020) 28.53 94.39 95.56 94.39 X NA

CIFAR-10 SSD+ (Sehwag et al., 2021) 7.22 98.48 98.59 NA X NA
OE (Hendrycks et al., 2018) 9.66 98.34 98.55 94.12 v random
oI (Meeeisa 200) Sar | oese oo sase
CCU (Meinke & Hein, 2020) 8.78 98.41 98.69 93.97 v random
NTOM (Chen et al., 2C 4.38 99.08 99.24 94.11 greedy
Energy (w. D,.) (Liu et al., 2020) 4.62 98.93 99.12 92.92 v random
POEM (ours) 2.54+0:56 99 40+0.05 99 50+0.07 g3 49+0.27 v Thompson

Observations:

« POEM achieves SOTA OOD detection performance and maintains comparable ID classification accuracy

- POEM utilizes outliers more effectively than other Outlier Exposure-based (w. D,,;x) methods



Thompson Sampling vs. Greedy Sampling

Din Method FPR9S5| AUROCT AUPR?T ID-ACC w./w.0. D,x  Sampling Method

MSP (Hendrycks & Gimpel, 2017) 58.98 90.63 03.18 94.39 X NA
ODIN (Liang et al., 2018) 26.55 94.25 95.34 94.39 X NA
Mahalanobis (Lee et al., 2018b) 29.47 89.96 89.70 94.39 X NA
Energy (Liu et al., 2020) 28.53 94.39 95.56 94.39 X NA

CIFAR-10 SSD+ (Sehwag et al., 2021) 7.22 98.48 98.59 NA X NA
OE (Hendrycks et al., 2018) 9.66 98.34 98.55 94.12 v random
SOFL (Mohseni et al., 2020) 541 08.98 99.10 93.68 v random
CCU (Meinke & Hein, 2020) 8.78 98.41 98.69 93.97 v random
99.08 9924 941l /
Energy (w. D,yy) (L1u et al., 2020) 4.62 98.93 99.12 92.92 v random
POEM (ours) 2.54+0:56 99 40+0.05 99 50+0.07 g3 49+0.27 v Thompson

Observations:

« POEM achieves SOTA OOD detection performance and maintains comparable ID classification accuracy
- POEM utilizes outliers more effectively than other Outlier Exposure-based (w. Dy,,x) methods

« Thompson Sampling (POEM) is better than greedy sampling (NTOM chen et al. [8])



Similar Trends Also Hold for CIFAR-100

Diy Method FPR9S| AUROCtT AUPR?T ID-ACC w./w.0. D,x  Sampling Method

MSP (Hendrycks & Gimpel, 2017) 80.30 73.13 76.97 74.05 X NA
ODIN (Liang et al., 2018) 56.31 84.89 85.88 74.05 X NA
Mahalanobis (Lee et al., 2018b) 47.89 85.71 87.15 74.05 X NA
Energy (Liu et al., 2020) 65.87 81.50 84.07 74.05 X NA

CIFAR-100 SSD+ (Sehwag et al., 2021) 38.32 88.91 89.77 NA X NA
OE (Hendrycks et al., 2018) 19.54 94.93 95.26 74.25 v random
SOFL (Mohseni et al., 2020) 19.32 96.32 96.99 73.93 v random
CCU (Meinke & Hein, 2020) 19.27 95.02 95.41 74.49 v random
NTOM (Chen et al., 2021) 19.96 96.29 97.06 73.86 v greedy
Energy (w. D,,x) (Liu et al., 2020 19.25 96.68 97.44 72.39 v random

v Thompson

Observations:

« POEM achieves SOTA OOD detection performance and maintains comparable ID classification accuracy
- POEM utilizes outliers more effectively than other Outlier Exposure-based (w. Dy,,x) methods

» Thompson Sampling (POEM) is better than greedy sampling (NTOM chen et al. [8])



A Closer Look at Benefits of Thompson Sampling

Observations

« POEM utilizes outliers more etficiently than other OE based methods

CIFAR-10 CIFAR-100

27.5
00— ———o o
© 10 —¢- - S 25.0
Y Y
) )
> S 225 | .
= = \\l
S 2 20.0 \f —A
) )
® ® 17.5
L i

60 70 80 90 100




A Closer Look at Benefits of Thompson Sampling

Observations

« POEM utilizes outliers more etficiently than other OE based methods
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 Training with more randomly sampled outliers does not improve the performance of Energy score

Method (CIFAR-100as Diy) | FPR9S | AUROC {1 Time|

1x outliers (rand. sampling) 19.25 96.68 5.0h
3x outliers (rand. sampling) 19.19 97.18 8.9h




Summary

Our contributions

»  We propose a novel Posterior Sampling-based Outlier Mining framework (POEM), which

facilitates etficient use of outlier data and promotes learning a compact ID-OOD decision boundary

» Theoretically: We provide insights on why outlier mining with high boundary scores benefits

sample efficiency

« Empirically:
« POEM established SoTA on common benchmarks
« Thompson Sampling 1s better than greedy sampling
» POEM utilizes outliers more eftectively than other OE-based methods

O https://github.com/deeplearning-wisc/poem
GitHub
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