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• Introduction: out-of-distribution (OOD) detection

• OOD detection with outlier exposure

• Outlier mining: a Thompson sampling view

• POEM: posterior sampling-based outlier mining

• Results and analysis
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CNN f (x;θ )

Trained on in-distribution data
(e.g., CIFAR-10)

Empirical risk minimization:

The Task of OOD Detection
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Trained on in-distribution data
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Model f (x;θ )

Trained on in-distribution data

xTest input

S: Scoring function

Based on the model f

The Task of OOD Detection



‣   Motivation: modern neural networks tend to be over-confident for OOD inputs  
         (Due to limited supervision with only ID data during training)
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OOD Detection with Outlier Exposure

‣   Challenge: the space of potential OOD data is extremely large for high-dim feature space
         

If we have a large auxiliary outlier dataset 

Sample space: green (ID) vs. orange (OOD)

‣   Requirement: data-efficient solution to learn a compact ID-OOD decision boundary
        



Illustration of Outlier Mining
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Illustration of Outlier Mining

Epoch 1 Epoch 4 Epoch 30Sample space: 
green (ID) vs. orange (OOD)

‣   Outlier Mining: to identify the most informative outlier samples close to 
the ID-OOD boundary

        



Outlier Mining: A Thompson Sampling View (informally)

‣ Our main novelty: framing outlier mining as a sequential decision making problem:
‣ Objective: to identify most informative outliers (i.e., close to the unknown ID-OOD boundary)
‣ At each timestep, 
‣ Action: outlier selection
‣ Reward: based on the closeness to the unknown ID-OOD boundary

‣  To summarize, finding outliers close to the boundary given an auxiliary set 
 can be formulated as optimizing an unknown function by selecting samples

‣ Exploration vs. exploitation trade-off is crucial for efficient optimization!
 Thompson Sampling (sampling from posterior distribution to take action)

→

→



Outlier Mining: A Thompson Sampling View (formally)

‣ TS for outlier mining: maintaining and modeling the distribution of , and using this 
model to select near-boundary outliers over time via posterior sampling

‣ At each step , the model parameter  is sampled from the posterior distribution of 
, then the learner takes an action  by choosing outlier  that maximize 

the estimated boundary score (to be defined next) according to 

w*

t wt

w* at x ∼ 𝒫aux
wt



Outlier Mining: Boundary Score

‣ Modeling Boundary Score: 

‣  is a function parameterized by  that maps input  
to the logit space: 

‣ Near-boundary outliers correspond to 

G(x) = − | foutlier(x; w*) |

foutlier w* x
p(outlier |x) = Sigmoid( foutlier(x; w*))

| foutlier(x; w*) | ≈ 0

‣   Q: How to measure the distance to the boundary for outlier samples?
        



‣ Intuitively, outliers with the highest boundary scores are 
more desirable for model regularization to learn a compact 
ID-OOD boundary

‣ Theoretically, we show that outliers with high boundary 
scores benefit sample complexity for OOD detection: 

‣ (Informal version of Thm 6.1) We show that FPR is a 
decreasing function of the average boundary score of the 
selected outlier under Gaussian mixture assumptions

Outlier Mining: Insights for Boundary Score



Outlier Mining: Estimating Boundary Score

‣ Recall ,  is unknown

‣ Given any  labeled as OOD/ID, we can infer a target logit  as 
an approximate target value of  

G(x) = − | foutlier(x; w*) | w*

x ytar
foutlier(x; w*)



Outlier Mining: Estimating Boundary Score

‣ Q: how to find the most informative outliers?

‣ Use the approximate target value to build a regression model with 
uncertainty measurement
  Choose outliers close to the sampled decision boundary via TS→

‣ Recall ,  is unknown

‣ Given any  labeled as OOD/ID, we can infer a target logit  as 
an approximate target value of  

G(x) = − | foutlier(x; w*) | w*

x ytar
foutlier(x; w*)



Outlier Mining: Modeling  with Neural Networksfoutlier
‣ We perform Bayesian linear regression (BLR) on top of the penultimate layer as 
feature  of a deep neural network to model the boundary score:

‣ At each timestep, estimate 

ϕ(x)

̂foutlier(x; wt) = wt⊤ϕ(x)



Outlier Mining: Modeling  with Neural Networksfoutlier
‣ We perform Bayesian linear regression (BLR) on top of the penultimate layer as 
feature  of a deep neural network to model the boundary score:

‣ At each timestep, estimate 

‣ To get , maintain and update the posterior distribution of : 
‣ Build a Gaussian prior of 

‣ Sample 

‣  posterior covariance matrix
‣ : concatenation of feature representations 
‣ : concatenation of target logit values
‣ : variance of i.i.d. noises for target logit values

ϕ(x)

̂foutlier(x; wt) = wt⊤ϕ(x)

wt w*
w0 ∼ 𝒩(0,Σ)

wt ∼ 𝒩 (σ−2Σ−1
p Φytar, Σ−1

p )
Σp := σ−2ΦΦ⊤ + Σ−1

Φ {ϕ(xi)}
ytar
σ2



Outlier Mining: Modeling  with Neural Networksfoutliter
‣ We perform Bayesian linear regression (BLR) on top of the penultimate layer 
feature  of a deep neural network to model the boundary score:

‣ At each timestep, estimate 

‣ To get , maintain and update the posterior distribution of : 
‣ Build a Gaussian prior of 

‣ Sample 

‣  posterior covariance matrix
‣ : concatenation of feature representations 
‣ : concatenation of target logit values
‣ : variance of i.i.d. noises for target logit values

‣ TS with BLR is a good trade-off between computational tractability and OOD 
detectability 

ϕ(x)

̂foutlier(x; wt) = wt⊤ϕ(x)

wt w*
w0 ∼ 𝒩(0,Σ)

wt ∼ 𝒩 (σ−2Σ−1
p Φytar, Σ−1

p )
Σp := σ−2ΦΦ⊤ + Σ−1

Φ {ϕ(xi)}
ytar
σ2



POEM: Posterior Sampling-based Outlier Mining 

Putting Together: Framework Overview



Putting Together: Training and Inference
‣Training loops:

‣ Step 1: Constructing an auxiliary outlier training set by selecting outliers with the 
highest sampled boundary scores from a large candidate pool

‣ Step 2: The classification branch, together with the network backbone are trained using 
a mixture of ID and selected outlier data with energy regularization (Liu et al. [1])

‣ Step 3: Based on the updated feature representation, we perform the posterior update 
of the weights in the outlier mining branch



Putting Together: Training and Inference
‣Training loops:

‣ Step 1: Constructing an auxiliary outlier training set by selecting outliers with the 
highest sampled boundary scores from a large candidate pool

‣ Step 2: The classification branch together with the network backbone are trained using 
a mixture of ID and selected outlier data with energy regularization (Liu et al. [1])

‣ Step 3: Based on the updated feature representation, we perform the posterior update 
of the weights in the outlier mining branch

‣Inference:

‣ At test time, OOD detection is based on the energy of the input: 
Dλ(x) = 1{−E(x) ≥ γ}

‣ Remark: threshold  is typically chosen so that a high fraction of ID data (e.g., 95%) is correctly classified
‣

γ



Experimental Setup

‣  ID datasets: 

‣CIDER-10 and CIFAR-100

‣  Auxiliary outlier dataset: 

‣ImageNet-RC (Chrabaszcz et al.) [2], a downsampled version of ImageNet1K

‣  OOD test sets: 

‣SVHN (Netzer et al.) [3], Textures (Cimpoi et al.) [4], Places365 (Zhou et al.) [5]. LSUN-crop, 

LSUN-resize (Yu et al.) [6], iSUN (Xu et al.) [7]

Datasets

Evaluation Metrics
‣  FPR95: the false positive rate (of OOD samples) when the true positive rate of ID samples is at 95%

‣  AUROC: the area under the receiver operating characteristic curve

‣  AUPR: the area under the precision-recall curve

‣  ID-ACC: ID classification accuracy.



Main Results: Overview

Observations: 

• POEM achieves SoTA OOD detection performance and maintains comparable ID classification accuracy



POEM Outperforms Other OE-based Methods 

• POEM achieves SoTA OOD detection performance and maintains comparable ID classification accuracy

• POEM utilizes outliers more effectively than other Outlier Exposure-based (w. ) methodsDaux

Observations: 



Thompson Sampling vs. Greedy Sampling

• POEM achieves SoTA OOD detection performance and maintains comparable ID classification accuracy

• POEM utilizes outliers more effectively than other Outlier Exposure-based (w. ) methods

• Thompson Sampling (POEM) is better than greedy sampling (NTOM chen et al. [8])

Daux
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Similar Trends Also Hold for CIFAR-100

• POEM achieves SoTA OOD detection performance and maintains comparable ID classification accuracy

• POEM utilizes outliers more effectively than other Outlier Exposure-based (w. ) methods

• Thompson Sampling (POEM) is better than greedy sampling (NTOM chen et al. [8])

Daux

Observations: 



A Closer Look at Benefits of Thompson Sampling

• POEM utilizes outliers more efficiently than other OE based methods 

Observations 



A Closer Look at Benefits of Thompson Sampling

• POEM utilizes outliers more efficiently than other OE based methods 

Observations 

• Training with more randomly sampled outliers does not improve the performance of Energy score 



Summary

• We propose a novel Posterior Sampling-based Outlier Mining framework (POEM), which 
facilitates efficient use of outlier data and promotes learning a compact ID-OOD decision boundary 

• Theoretically: We provide insights on why outlier mining with high boundary scores benefits 
sample efficiency

• Empirically:
• POEM established SoTA on common benchmarks 
• Thompson Sampling is better than greedy sampling
• POEM utilizes outliers more effectively than other OE-based methods

Our contributions 

https://github.com/deeplearning-wisc/poem

https://github.com/deeplearning-wisc/poem

