Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks

Runpei Dong, Zhanhong Tan, Mengdi Wu, Linfeng Zhang and Kaisheng Ma

Xi'an Jiaotong University & Tsinghua University – ArChip Lab

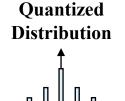
International Conference on Machine Learning (ICML) July 17th – 23rd, 2022

Summary – Main Contributions

A novel quantization method: DGMS

- The task-optimal latent low-bit sub-distribution guiding the quantization
- Trainable distributions and weights using a self-adaptive and end-to-end fashion
- Promising transfer ability of the found sub-distribution
- Domain-invariant and model-inherent sub-distribution
- Remarkable compression and generalization performance
- Negligible accuracy loss for 4-bit model on classification and object detection
- An efficient TVM-based deployment flow Q-SIMD for DGMS
- Up to 7.46X speedup on mobile CPUs

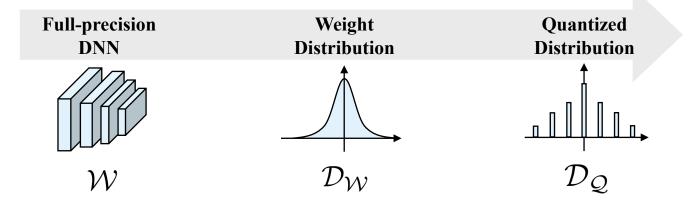
Motivations – Quantization Problem



Quantization Target

- Eliminating the representative redundancy via shortened bit-width (less memory, I/O)
- Reduce computational cost

Full-precision DNN



Motivations – Quantization Problem

Quantization Target

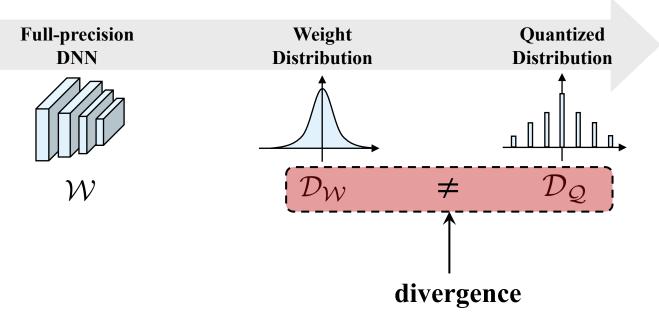
- Eliminating the representative redundancy via shortened bit-width (less memory, I/O)
- Reduce computational cost

Projection Definition

- Projection: $Q: W \in \mathbb{R} \to Q = \{q_0, q_1, \dots, q_K\}$
 - $\mathcal{W} \sim \mathcal{D}_{\mathcal{W}}$: real-valued FP32 preimage
 - $\mathcal{Q} \sim \mathcal{D}_{\mathcal{Q}}$: compressed discrete representation

Motivations – Quantization Problem

Quantization Target


- Eliminating the representative redundancy via shortened bit-width (less memory, I/O)
- Reduce computational cost

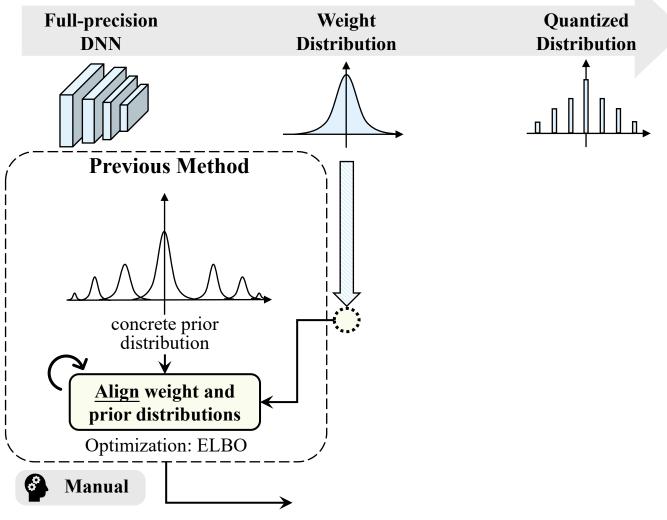
Projection Definition

- Projection: $Q: W \in \mathbb{R} \to Q = \{q_0, q_1, \dots, q_K\}$
 - $\mathcal{W} \sim \mathcal{D}_{\mathcal{W}}$: real-valued FP32 preimage
 - $\mathcal{Q} \sim \mathcal{D}_{\mathcal{Q}}$: compressed discrete representation

Distribution Divergence Problem

• $\mathcal{D}_{\mathcal{Q}}$ suffers a distributional divergence from the preimage $\mathcal{D}_{\mathcal{W}}$

Motivations – Previous Methods Issues



Discontinuous-Mapping

- Rounding operation
- Require fixed configurations (e.g., centroids & stepsize)
- Inaccurate pseudo-gradient with STE
- Ignore global statistical information

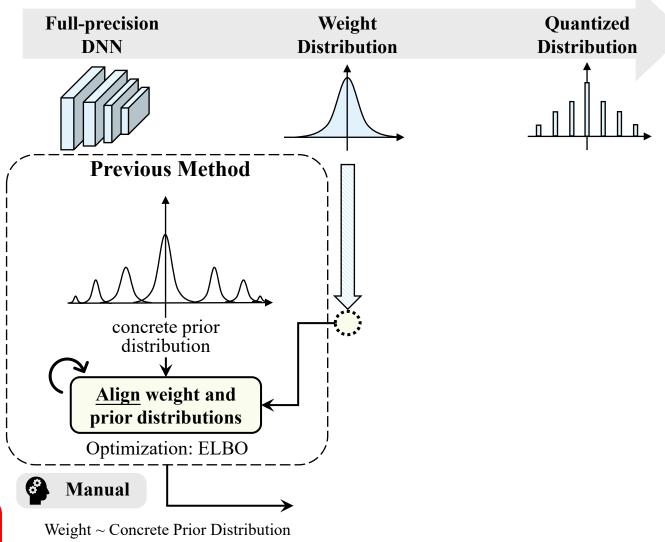
Continuous-Mapping

- Adaptive-mapping
- Require concrete prior distribution $\mathcal{D}_{\mathcal{P}}$
- Require non-trivial & non-optimal manual configurations (e.g., $\mathcal{D}_{\mathcal{P}}$ hyperparameters)
- Optimize ELBO target
- Large memory footprint for MCMC
- Unapplicable to advanced DNN

Weight \sim Concrete Prior Distribution

Quantized DNN

Motivations – Previous Methods Issues


Discontinuous-Mapping

- Rounding operation
- Require fixed configurations (e.g., centroids & stepsize)
- Inaccurate pseudo-gradient with STE
- Ignore global statistical information

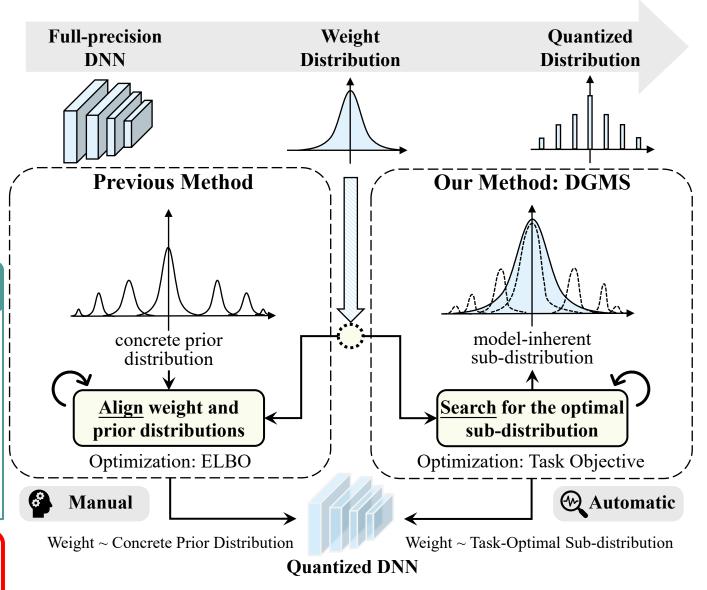
Continuous-Mapping

- Adaptive-mapping
- Require concrete prior distribution $\mathcal{D}_{\mathcal{P}}$
- Require non-trivial & non-optimal manual configurations (e.g., $\mathcal{D}_{\mathcal{P}}$ hyperparameters)
- Optimize ELBO target
- Large memory footprint for MCMC
- Unapplicable to advanced DNN

Question: Whether there exists a task-optimal latent *sub-distribution* for quantization as the *sub-network* proposed by the "Lottery Ticket Hypothesis"?

Quantized DNN

Key Idea Comparison


- Automatic searching
- Model-inherent latent sub-distribution
- Non-manual quantization configs
- Directly optimize task-objective
- Task-optimal quantization

What is sub-distribution?

Definition 1 (Sub-Distribution)

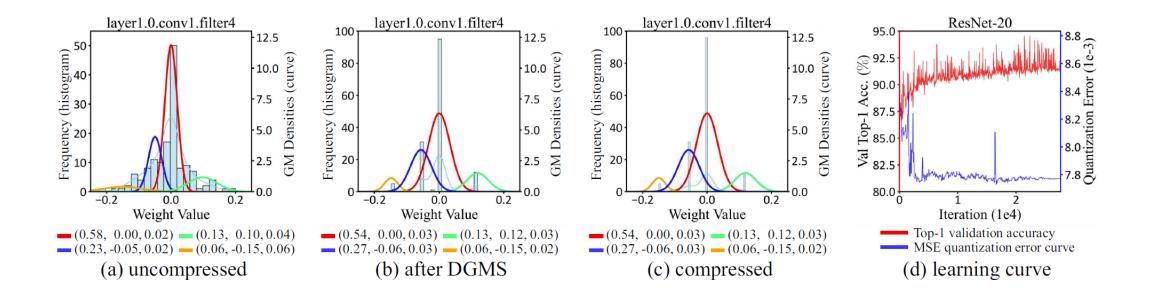
Given the preimage $W \sim D_W$ and quantized data $Q \sim D_Q$, the sub-distribution D_S is defined as an estimation for D_W (i.e., $D_S \cong D_W$ where \cong denotes approximate equivalence), and under a parameter limitation τ , D_S is approximately equivalent to D_Q (i.e., $\lim_{\tau \to 0} D_S \cong D_Q$).

Key idea: The model-inherent sub-distribution serves as a distributional bridge and automatically evolves

Image Classification & Object Detection

Model	#Params	Bits mAP aero	bike	bird b	oat	bottle	bus	car	cat	chair	cow	dog	horse	mbike	person	plant	sheep	sofa	table	train	tv
		32 68.6 69.7																			
-MBV2	2.68M	4 67.9 69.4	78.5	63.6 5	64.6	34.2	77.6	73.1	82.4	53.1	61.1	76.3	81.3	81.3	70.7	41.0	62.3	78.8	72.6	81.1	65.0
		32 67.2 66.0																			
-MBV3	1.26M	4 65.7 65.5	77.9	55.5 5	64.5	34.3	77.7	72.1	83.8	48.7	59.6	76.2	80.2	75.8	69.2	37.2	57.0	72.3	72.5	80.8	62.5

	Our FP32	×	FP32	76.15%	N/A
	UNIQ	×	4/32	75.09%	-0.93%
	HAQ	\times	4/32 mixed	76.14%	-0.01%
	Ours	×	4/32	76.28%	+0.13%
	CLIP-Q [♯]	\checkmark	3/32	73.70%	+0.60%
	HAQ	\times	3/32 mixed	75.30%	-0.85%
	Ours	×	3/32	75.91%	-0.24%
ResNet-50	HAQ	×	2/32 mixed	70.63%	-5.52%
	Ours	×	2/32	72.88%	-3.27%
	UNIQ	×	4/8	74.37%	-1.65%
	TQT	\times	4/8	74.40%	-1.00%
	HAWQV3	\times	4/8 mixed	75.39%	-2.33%
	Ours	×	4/8	76.22%	+0.07%
	AutoQ	×	4/4	72.43%	-2.37%
	HAWQV3	\times	4/4	74.24%	-3.48%
	Ours	×	4/4	75.05%	-1.10%


	Our FP32	\times	FP32	73.51%	N/A
MnasNet-A1	ANNC [‡]	\checkmark	4/32	71.80%	-1.66%
Milasinet-A1	Ours	\times	4/32	72.18%	-1.33%
	Ours	×	4/8	72.09%	-1.42%
	Our FP32	×	FP32	74.59%	N/A
ProxylessNAS	ANNC [♯]	\checkmark	4/32	72.46%	-2.13%
-Mobile	Ours	\times	4/32	73.85%	-0.74%
	Ours	×	4/8	73.24%	-1.35%

Model	ResNet-18	ResNet-50	MnasNet-A1	ProxylessNAS	SSDLite [♦]
Baseline	67.09 ms	148.56 ms	18.27 ms	22.17 ms	43.95 ms
DGMS	8.99 ms	34.26 ms	10.49 ms	13.34 ms	25.60 ms
Speedup	7.46×	4.34×	1.74×	1.66×	$1.72 \times$

 \diamond SSDLite-MBV2 with MobileNetV2 as the backbone model.

Sub-distribution Evolution & Domain-invariance Study

Target		ImageNet		С	UB 200-20	11	S	tanford Ca	rs	FGVC Aircraft			
FP32 Full-Model 4-bit DGMS (w/o transfer)		69.76% 70.25%			78.68% 77.90%			86.58% 86.39%			80.77% 80.41%		
4-bit DGMS (w/ transfer)	Source	CUB	Cars	Air	Img	Cars	Air	Img	CUB	Air	Img	CUB	Cars
	ZERO-SHOT ONE-EPOCH	34.69% 68.37%	62.31% 69.13%	35.09% 68.80%	73.53% 77.70%	74.29% 77.54%	66.44% 77.50%	82.28% 85.70%	81.46% 85.84%	71.75% 85.79%	77.46% 79.90%	74.97% 79.87%	77.31% 80.14%

Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks

Runpei Dong, Zhanhong Tan, Mengdi Wu, Linfeng Zhang and Kaisheng Ma

Xi'an Jiaotong University & Tsinghua University – ArChip Lab

Thanks!

Please contact us if you have any questions. runpei.dong@outlook.com

