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— Tensor ring decomposition:
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CP Decomposition Can Be Formulated as an
Optimization Problem

* Formulate as optimization problem:

= = =
min - H T Tt
/ | ]
1
Want to find

Given

- Difficult non-convex optimization problem!
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Alternating Minimization Is a Popular Approach for
Computing CP Decomposition

« Solve via alternating minimization:

~ ~ ~ Easy problems:
min — + et linear least squares!
/ \ )
I
Given Want to find

* Repeat!
» Curse of dimensionality: Cost of each step scales exponentially with number of modes

— 3-way n X n X n tensor: Cost = n° N

— d-way n X --- X n tensor: Cost = n¢ n

n
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Sampling-Based Techniques Can Yield Input Sublinear

Per-lteration Cost

« Approach: Sample the optimization problems

» We improve on previous efforts:

Complexity” d dependence

CP-ALS #it-d(d + n)n®" 'R  Exponential
SPALS [CP+16] #it- d(d + n)R**1  Exponential
CP-ARLS-LEV [LKk20] #it- d(R + n)R“ Exponential

CP-ALS-ES —our proposal  #it-d?R3(R +dn)  Polynomial

[CP+16] Cheng, Peng, Liu, Perros. NeurlPS, 2016.

[LK’20] Larsen, Kolda. arXiv:2006.16438v3, 2020.

* Leading order complexity required for per-iteration relative-error guarantees. Ignores log factors and
assumes fixed accuracy and failure probability.
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We Achieve Similar Improvements for the Tensor Ring
Decomposition

n
- We improve on previous efforts:
n
Method Complexity* d dependence
TR-ALS [zz+16] #it - dn?R? Exponential Notation: n .
_ d: Number of modes/indices
'rmR-ALS [YL+'19] dndK + #it - deRZ EXponentlal n: Dimension
TR-SVD [zz+16] [MK’20] ndtl 4 pdps Exponential R: Tensor ring rank
TR-SVD-Rand [AAC+20] neR? Exponential #it: Number of iterations
TR-ALS-Sampled [vB'21] #it - dnR?4+? Exponential k
TR-ALS-ES — our proposal  #it-d3R®(R +n)  Polynomial R can exceed 1 in
2210 2, 2w, i, Zang, Ok, 016060553, 2016 tensor decomposition

[MK’20] Mickelin, Karaman. Numer Linear Algebra Appl 27(3):e2289, 2020.

[AAC+20] Ahmadi-Asl, Cichocki, Phan, Asante-Mensah, Mousavi, Oseledets, Tanaka. Mach learn: sci technol, 2020.

[MB’21] Malik, Becker. ICML, 2021.

* Leading order complexity required for per-iteration relative-error guarantees. Ignores log factors and assumes fixed accuracy
and failure probability.
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