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Tensors and Their Decompositions

• In this talk: Tensors = multidimensional arrays

• 𝑑-way tensor = array with 𝑑 indices: 𝑋(𝑖1, 𝑖2, … , 𝑖𝑑)

• Decomposition breaks tensors into smaller pieces

– CP decomposition:

– Tensor ring decomposition:
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CP Decomposition Can Be Formulated as an 

Optimization Problem

• Formulate as optimization problem:

• Difficult non-convex optimization problem!
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Alternating Minimization Is a Popular Approach for 

Computing CP Decomposition

• Solve via alternating minimization:

• Repeat!

• Curse of dimensionality: Cost of each step scales exponentially with number of modes

– 3-way 𝑛 × 𝑛 × 𝑛 tensor: Cost ≳ 𝑛3

– 𝑑-way 𝑛 ×⋯× 𝑛 tensor: Cost ≳ 𝑛𝑑
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Sampling-Based Techniques Can Yield Input Sublinear 

Per-Iteration Cost

Method Complexity* 𝒅 dependence

CP-ALS #it ⋅ 𝑑 𝑑 + 𝑛 𝑛𝑑−1𝑅 Exponential

SPALS [CP+’16] #it ⋅ 𝑑 𝑑 + 𝑛 𝑅𝑑+1 Exponential

CP-ARLS-LEV [LK’20] #it ⋅ 𝑑 𝑅 + 𝑛 𝑅𝑑 Exponential

CP-ALS-ES – our proposal #it ⋅ 𝑑2𝑅3(𝑅 + 𝑑𝑛) Polynomial
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[CP+’16]  Cheng, Peng, Liu, Perros. NeurIPS, 2016.

[LK’20]  Larsen, Kolda. arXiv:2006.16438v3, 2020.

* Leading order complexity required for per-iteration relative-error guarantees. Ignores log factors and 

assumes fixed accuracy and failure probability.

Notation:

𝑑: Number of modes/indices

𝑛: Dimension

𝑅: CP rank

#it: Number of iterations

𝑛

𝑛

𝑛

• Approach: Sample the optimization problems

• We improve on previous efforts:

𝑅 can exceed 𝑛 in 

tensor decomposition
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We Achieve Similar Improvements for the Tensor Ring 

Decomposition

Method Complexity* 𝒅 dependence

TR-ALS [ZZ+’16] #it ⋅ 𝑑𝑛𝑑𝑅2 Exponential

rTR-ALS [YL+’19] 𝑑𝑛𝑑𝐾 + #it ⋅ 𝑑𝐾𝑑𝑅2 Exponential

TR-SVD [ZZ+’16] [MK’20] 𝑛𝑑+1 + 𝑛𝑑𝑅3 Exponential

TR-SVD-Rand [AAC+’20] 𝑛𝑑𝑅2 Exponential

TR-ALS-Sampled [MB’21] #it ⋅ 𝑑𝑛𝑅2𝑑+2 Exponential

TR-ALS-ES – our proposal #it ⋅ 𝑑3𝑅8(𝑅 + 𝑛) Polynomial
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[ZZ+’16]  Zhao, Zhou, Xie, Zhang, Cichocki. arXiv:1606.05535, 2016.

[YL+’19]  Yuan, Li, Cao, Zhao. ICASSP, 2019.

[MK’20]  Mickelin, Karaman. Numer Linear Algebra Appl 27(3):e2289, 2020.

[AAC+’20]  Ahmadi-Asl, Cichocki, Phan, Asante-Mensah, Mousavi, Oseledets, Tanaka. Mach learn: sci technol, 2020.

[MB’21]  Malik, Becker. ICML, 2021.

* Leading order complexity required for per-iteration relative-error guarantees. Ignores log factors and assumes fixed accuracy 

and failure probability.

• We improve on previous efforts:

Notation:

𝑑: Number of modes/indices

𝑛: Dimension

𝑅: Tensor ring rank

#it: Number of iterations

𝑛

𝑛

𝑛
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𝑅 can exceed 𝑛 in 

tensor decomposition


