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Current state of self-supervised learning

e NLP: masked prediction (BERT)

e Vision: contrastive, data aug, input reconstruction
(MoCo, SImCLR, BYOL, DINO, MAE, ...)

e Speech: similar to vision
(wav2vec, CPC, Hubert, TERA, ...)

Maximize agreement




Current state of self-supervised learning

e Many different algorithms
e Most algorithms developed for particular modality

e Little focus on algorithms that generalize across modalities



data2vec

e General algorithm that works very well across modalities
(Outperforms best algorithms in speech/vision and competitive in NLP)

e Same learning objective for each modality

e |dea: self-distillation of contextualized representations in a masked prediction
setup



Related work

e Momentum teacher - BYOL, DINO
(Grill et al,, 20, Caron et al.,21)
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data2vec

contextualized targets

self-distillation
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data2vec

Images

Original v-.-.uml|||IH””||||||||||||||||||I|||||||II|||I||IIIII|I|I||| -------- o

........II|III|II||IIII|I-II """"" o

|
|
I
|
|
|
I
I
I
|
I
|
I
I
I
|
I
I
I
I
I
|
I
I
I
|
|
|

I
I
I
|
I
|
I
I
I
|
|
|
I
I
|
|
|
I
I
I
|
|
|
I

Language

| like tea with milk

| like tea - milk

Predict model
representation of
original input

Teacher tracks
student
parameters

Modality specific feature encoder (CNN, embedding table, patch mapping)
Common masking policy, but modality/dataset specific parameterization

/dentical context encoder (Transtormer)

/dentical learning task



Vision Results
ViT-L on ImageNet-1K

top-1 accuracy on valid

MAE MaskFeat data2vec

Multiple models Single models




Speech Results

Librispeech test-other, Large models
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NLP Results

GLUE score
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Teacher representation construction
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Target context size
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Limitations

e Modality specific feature encoder and masking parameters

e Requires two forward-passes
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Conclusion

A single learning objective can outperform the best modality-specific algorithms for
vision/speech while being competitive on NLP

e Target representations based on large context windows and from multiple layers lead
to a richer SSL task and improve performance

e We hope future work will continue to devise learning algorithms that work across
multiple modalities, rather than focusing on individual settings
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