

Constrained Variational Policy Optimization for Safe Reinforcement Learning

Zuxin Liu¹, Zhepeng Cen¹, Vladislav Isenbaev², Wei Liu², Zhiwei Steven Wu¹, Bo Li³, Ding Zhao¹

¹Carnegie Mellon University, ²Nuro, Inc., ³UIUC

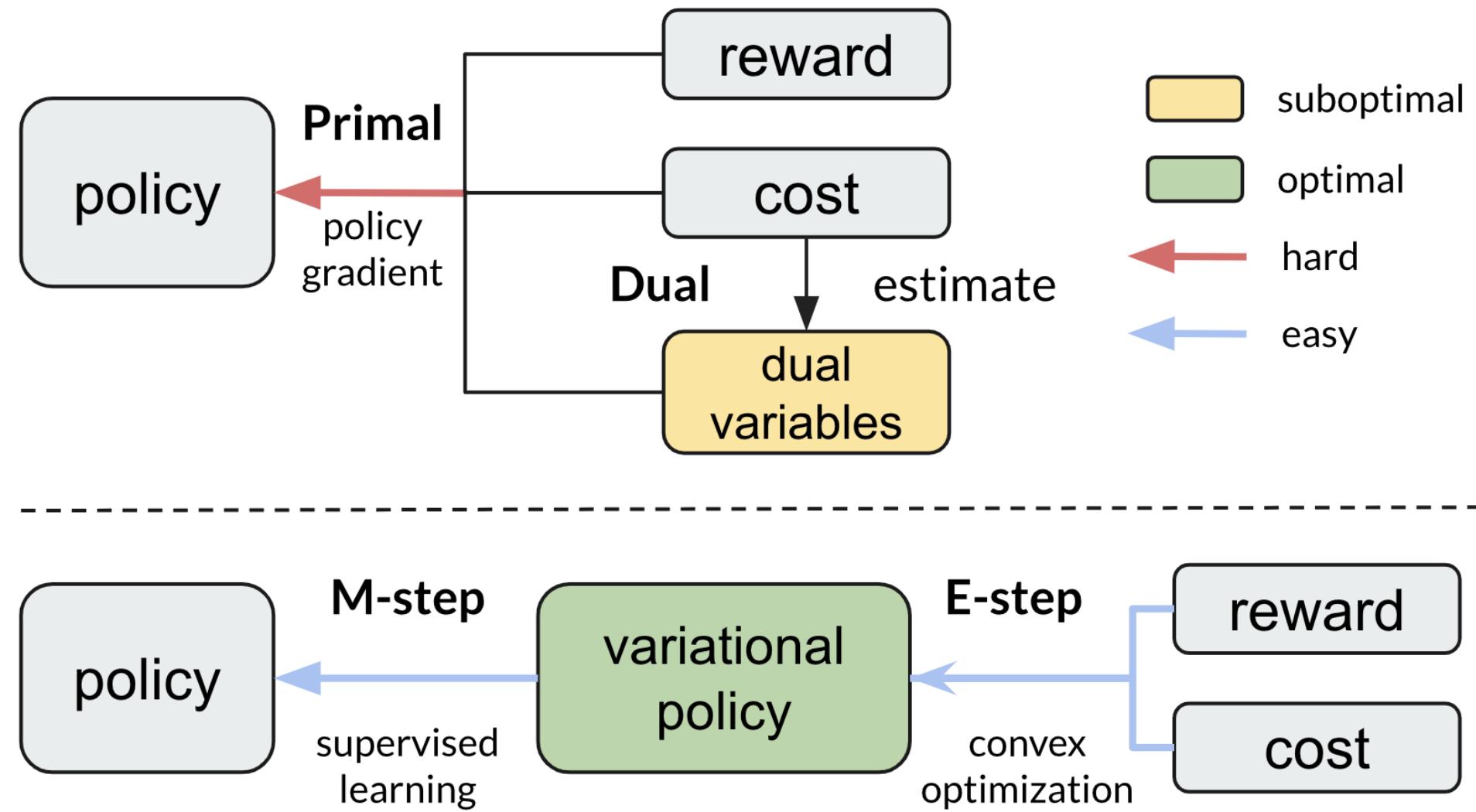


Introduction & Background

Safe reinforcement learning (RL) aims to learn policies that satisfy certain constraints before deploying to safety-critical applications:

$$\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_t \gamma^t r_t \right], \text{ s.t. } \mathbb{E} \left[\sum_t \gamma^t c_t \right] \leq \epsilon$$

- Previous primal-dual style approaches suffer from instability issue and lack optimality guarantees.
- We solve the safe RL problem from the probabilistic inference perspective and propose an EM-style method **CVPO** (constrained variational policy optimization) with 3 advantages: (1) Sample efficient (2) stable performance (3) With optimality guarantees.



Method: CVPO

The benefits of viewing safe RL as inference:

- There is no inaccurate *dual variable optimization* and difficult *policy improvement*.
- Introducing a variational distribution and solving constrained optimization by EM algorithm.

Objective: optimize the evidence lower bound (ELBO) in a feasible (constraint satisfied) policy set Π^{ϵ_1} .

$$\begin{aligned} \max \mathcal{J}(q, \theta) &\triangleq \mathbb{E}_{\tau \sim q} [\sum_t (\gamma^t r_t - \alpha D_{KL}[q(\cdot|s, a) || \pi_\theta(\cdot|s, a)])] + \log p(\theta), \\ \text{s.t. } q &\in \Pi^{\epsilon_1} \end{aligned}$$

E-step: to find the optimal variational distribution q to

- Maximize the return of task reward;
- Satisfy the safety constraints meanwhile.

$$\max_q \mathbb{E}_{\tau \sim q} \left[\int q(a|s) Q_r^{\pi_\theta}(s, a) da \right],$$

$$\begin{aligned} \text{s.t. } & \left\{ \begin{aligned} \mathbb{E}_{\tau \sim q} \left[\int q(a|s) Q_c^{\pi_\theta}(s, a) da \right] \leq \epsilon_1 \\ \mathbb{E}_{\tau \sim q} \left[D_{KL}[q(a|s) || \pi_\theta(a|s)] \right] \leq \epsilon_2 \\ \int q(a|s) da = 1 \end{aligned} \right. \end{aligned}$$

With Slater's condition, the above problem has closed-form solution,

$$q^*(a|s) = \frac{\pi_\theta(a|s)}{Z} \exp \left(\frac{Q_r^{\pi_\theta}(s, a) - \lambda^* Q_c^{\pi_\theta}(s, a)}{\eta^*} \right),$$

where λ^*, η^* can be solved by **convex optimization**.

M-step: To improve the ELBO w.r.t. θ by fitting π_θ to the optimal variational policy q^* .

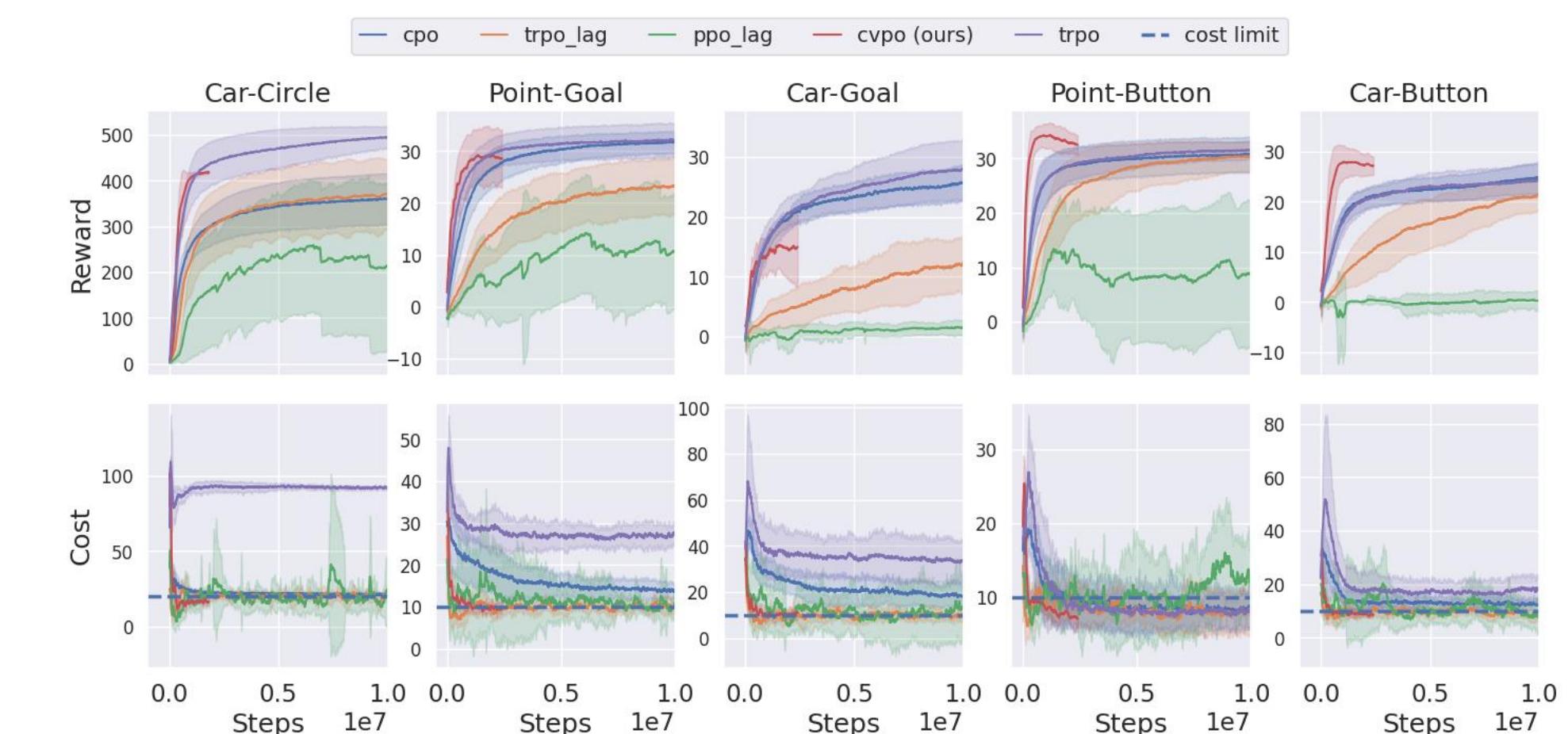
$$\begin{aligned} \max_{\theta} \mathbb{E}_{\tau \sim q} \left[\mathbb{E}_{q^*(\cdot|s)} [\log \pi_\theta(a|s)] \right], \\ \text{s.t. } \mathbb{E}_{\tau \sim q} \left[D_{KL}[\pi_\theta || \pi_\theta] \right] \leq \epsilon \end{aligned}$$

The M-step is a **supervised learning** problem that is easier to solve than policy gradient.

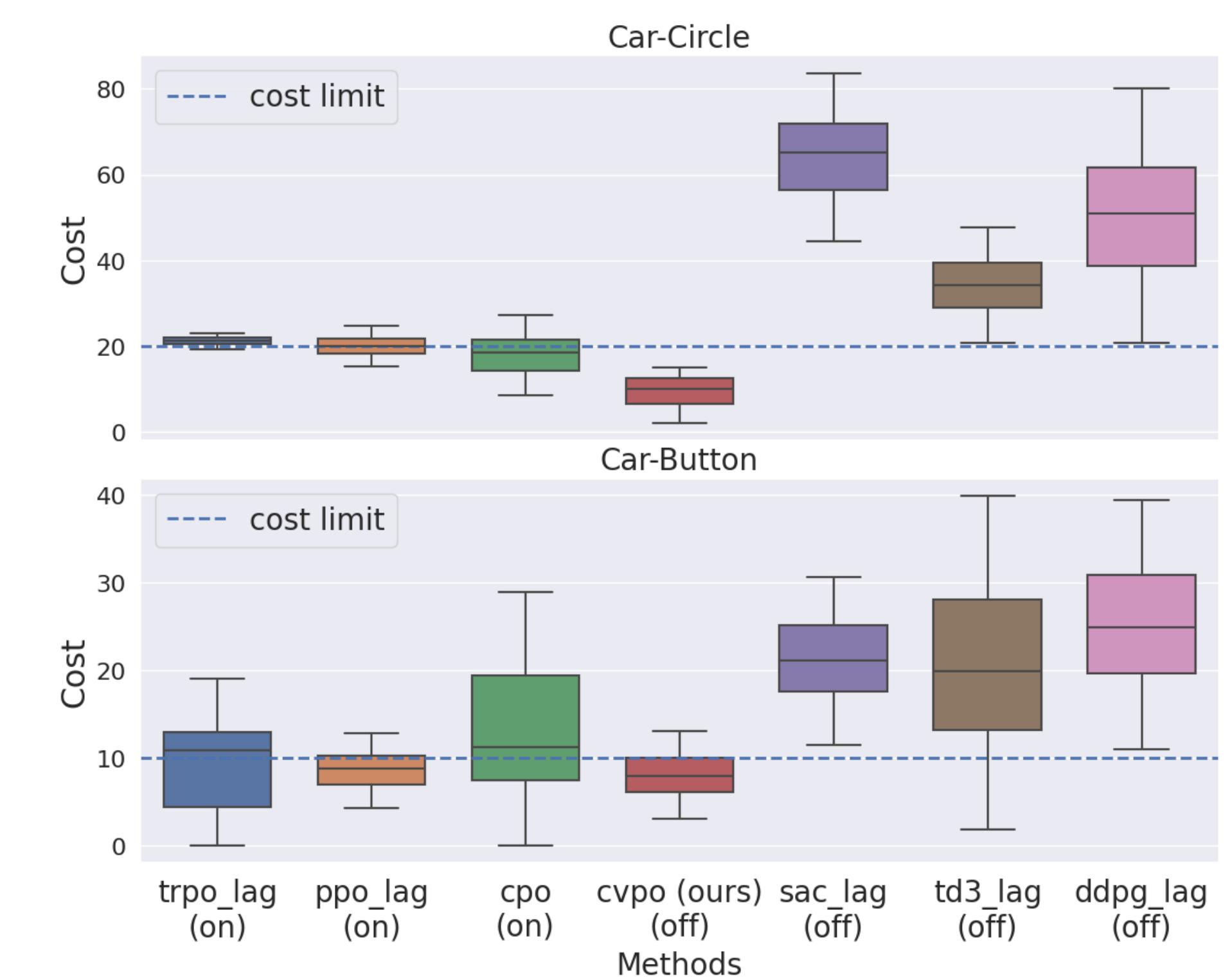
Theoretical guarantees:

- Monotonic improvement by EM algorithm.
- Bounded worst-case safety violation.
- Robust policy improvement.

Results & Conclusion



The training curves of different safe RL methods on safety-gym tasks



Boxplot of convergence cost. On/off denote on-policy/off-policy.

For safe RL problem, CVPO enjoys the advantages of

- High **sample-efficiency** from off-policy algorithm;
- **Stable** performance and constraint satisfaction;
- Theoretical **optimality & feasibility** guarantees.