
Constrained Variational Policy Optimization for Safe Reinforcement Learning

Introduction & Background

Safe reinforcement learning (RL) aims to learn policies 

that satisfy certain constraints before deploying to 

safety-critical applications: 
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• Previous primal-dual style approaches suffer from 

instability issue and lack optimality guarantees. 

• We solve the safe RL problem from the probabilistic 

inference perspective and propose an EM-style 

method CVPO (constrained variational policy 

optimization) with 3 advantages: (1) Sample efficient 

(2) stable performance (3) With optimality guarantees.

Method: CVPO

The benefits of viewing safe RL as inference:

• There is no inaccurate dual variable optimization and 

difficult policy improvement.

• Introducing a variational distribution and solving 

constrained optimization by EM algorithm.
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Objective: optimize the evidence lower bound (ELBO) 

in a feasible (constraint satisfied) policy set Π𝜖1.

max𝒥 𝑞, 𝜃 ≜ 𝔼𝜏∼𝑞 ∑ 𝛾𝑡𝑟𝑡 − 𝛼𝐷𝐾𝐿 𝑞 𝜋𝜃 + log 𝑝 𝜃 ,

s. 𝑡. 𝑞 ∈ Π𝜖1

E-step: to find the optimal variational distribution 𝑞 to

• Maximize the return of task reward;

• Satisfy the safety constraints meanwhile.
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With Slater’s condition, the above problem has closed-

form solution,
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where 𝜆∗, 𝜂∗ can be solved by convex optimization.

M-step: To improve the ELBO w.r.t. 𝜃 by fitting 𝜋𝜃 to 

the optimal variational policy 𝑞∗. 
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The M-step is a supervised learning problem that is 

easier to solve than policy gradient.

Theoretical guarantees:

• Monotonic improvement by EM algorithm.

• Bounded worst-case safety violation.

• Robust policy improvement.
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Results & Conclusion
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For safe RL problem, CVPO enjoys the advantages of

• High sample-efficiency from off-policy algorithm;

• Stable performance and constraint satisfaction;

• Theoretical optimality & feasibility guarantees.
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