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Optimal transport maps
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Estimating optimal transport maps

p &
Given i.i.d samples X;,...,X, ~Pand Y,,....,Y, ~ QO

Question: How to estimate T, on the basis of samples?
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Prior work: entropic map

Inspired by entropic optimal transport [Cut13], prior work [PNW21] studiea
the entropic map between two distributions

T,:=E,[Y|X=x]
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Drawbacks: underdispersed

Approximation of the
target distribution is
underdispersed tor

large &




Fix: Debiasing/Centering

- Conventional wisdom in optimal transport: debias the entropic problem

- Seen in several works [GPC18, GC+19, FS+19, CR+20]

- |[dea: add a correction term so that when P = Q, we recover the identity map
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- The correction term &, : | is obtained by solving the entropic

transport problem from the source measure onto itself
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Main findings

Asymptotic guarantees
For judicious choice of g, debiasing corrects underdispersion
For wrong choice of €, debiasing leads to unnecessary overdispersion

Whether debiasing is better or worse is sensitive to P and Q

Debiasing seems to be much more sensitive to statistical errors



Asymptotic behavior in ¢

Debiased entropic map

= TE + 55

versus (biased) entropic map 7.



Asymptotic behavior in ¢
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Judicious choice of ¢

Synthetic examples: estimating optimal transport maps (plots are in d = 10)

Ty(x) = Ax To(x) = (exp(x)L,

MSE




MSE

Beware of pitfalls
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What isn’t covered in this presentation:

- Theorems (asymptotic behavior of T and T)

- Gaussian-to-Gaussian case: rates of convergence showing that
debiasing is asymptotically better

- Counter-results showing that debiasing does not always lead to
better estimation in MSE
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