### Online Decision Transformer

QINQING ZHENG, AMY ZHANG, ADITYA GROVER

**ICML 2022** 



### 01 Problem & Motivation

### Reinforcement Learning



Nonstatic dataset via feedback loop

### Supervised Learning



Static labeled dataset

### Data Obstacle of Reinforcement Learning

- Online data collection can be expensive, dangerous, and even infeasible (e.g., healthcare)
- Online data is limited in size, whereas utilizing extra, previously collected data is preferred for complex tasks

# Offline Reinforcement Learning

- Static dataset collected by certain (unknown) policies
- No online interactions
- Goal is still the same: obtain high return (total reward)

# Online Reinforcement Learning Action State, Reward Environment



(figures taken from DeepMind blog)

# Offline RL as Sequence Modeling

Decision Transformer (Chen et al. 2021), Trajectory Transformer (Janner et al. 2021):

- trajectory = sequence of (state, action, reward) tuples
- Transformer for autoregressive sequence modeling
- Conditional behavior cloning (BC)



DT architecture (Chen et al. 2021)

- Offline RL: performance is greatly influenced by the data quality
  - Data collected by expert/sub-optimal policies -> good/poor performance

- Offline RL: performance is greatly influenced by the data quality
  - Data collected by expert/sub-optimal policies -> good/poor performance
- Online RL: data collection is infeasible or expensive

- Offline RL: performance is greatly influenced by the data quality
  - Data collected by expert/sub-optimal policies -> good/poor performance
- Online RL: data collection is infeasible or expensive
- Hybrid: leverage both the stability of offline training and fresh data from online exploration

Often needed in production systems! e.g. Ads Recommendation

Hybrid: leverage both the stability of offline training and fresh data from online exploration

Can the pretraining (offline) + finetuning (online) paradigm, remarkably successful in language and vision, also be successful in RL? Improve upon the offline performance using very few online data.

Hybrid: leverage both the stability of offline training and fresh data from online exploration

Can the pretraining (offline) + finetuning (online) paradigm, remarkably successful in language and vision, also be successful in RL? Improve upon the offline performance using very few online data.

At a high level, can purely supervised learning methods work well for RL in the online setting?

### 02 Online Decision Transformer

### Basics

Decision Transformer (DT) models a trajectory  $\tau$  as sequence of (RTG g, state s and action a) tuples

$$(g_1, s_1, a_1, g_2, s_2, a_2, \dots, g_{|\tau|}, s_{|\tau|}, a_{|\tau|})$$

 $g_t = \sum_{t'=t}^{|\tau|} r_{t'}$  return-to-go (RTG) at timestep t



DT architecture (Chen et al. 2021).

### Basics

DT generates return-conditioned policies.

#### Rollout:

- 1. Specify the desired return  $g_1$  and an initial state  $s_1$ .
- 2. Generate  $a_1$ , execute it and then observe  $s_2$  and  $r_1$ .
- 3. Compute  $g_2 = g_1 r_1$ . Now we can generate  $a_2$ .
- 4. Repeat until the episode terminates.



DT architecture (Chen et al. 2021).

### Online Decision Transformer

How to enable sample-efficient online exploration?

### Online Decision Transformer

How to enable sample-efficient online exploration?

Max-entropy sequence modeling with carefully chosen design choices.

# Max-Ent Sequence Modeling

#### Notation

 ${\mathcal T}$  - training data distribution

K – context (input seq) length of Transformer

 $\theta$  - parameter

(a, s, g) - subtrajectory of length K

#### **Stochastic Policy**

$$\pi_{\theta}(a_t|\mathbf{s}_{-K,t},\mathbf{g}_{-K,t}) = \mathcal{N}(\mu_{\theta}(\mathbf{s}_{-K,t},\mathbf{g}_{-K,t}),\Sigma_{\theta}(\mathbf{s}_{-K,t},\mathbf{g}_{-K,t})), \forall t$$

generate action based on recent *K* states and RTGs

#### Formulation

$$\min_{\theta} J(\theta) \text{ subject to } H_{\theta}^{\mathcal{T}}[\mathbf{a}|\mathbf{s},\mathbf{g}] \geqslant \beta$$

$$J(\theta)$$
 – Negative log-likelihood

$$H_{ heta}^{\mathcal{T}}[\mathbf{a}|\mathbf{s},\mathbf{g}]$$
 – Policy Entropy

we use -(act dim) as in SAC (Haarnoja et al. 2018)

# Max-Ent Sequence Modeling

Key differences to SAC (Haarnoja et al. 2018) and other classic max-ent RL methods:

Purely supervised learning of action
 sequences as opposed to maximizing returns

#### **Objective of ODT**

$$J(\theta) = \frac{1}{K} \mathbb{E}_{(\mathbf{a}, \mathbf{s}, \mathbf{g}) \sim \mathcal{T}} [-\log \pi_{\theta}(\mathbf{a}|\mathbf{s}, \mathbf{g})]$$
  
=  $\frac{1}{K} \mathbb{E}_{(\mathbf{a}, \mathbf{s}, \mathbf{g}) \sim \mathcal{T}} [-\sum_{k=1}^{K} \log \pi_{\theta}(a_{k}|\mathbf{s}_{-K, k}, \mathbf{g}_{-K, k})]$ 

minimize the loglikelihood of observed actions

#### **Objective of Classic Max-Ent RL Methods**

$$\mathbb{E}_{s_t \sim P(\cdot | S_{t-1}), a_t \sim \pi(\cdot | S_t)} \left[ \sum_t \gamma^t \, r(s_t, a_t) \right]$$

maximize the expected return

# Max-Ent Sequence Modeling

Key differences to SAC (Haarnoja et al. 2018) and other classic max-ent RL methods:

- Purely supervised learning of action
   sequences as opposed to maximizing returns
- Entropy defined on sequence level as opposed to transition-level. For the same  $\beta$ , ODT has larger feasible set than SAC.

#### Policy Entropy of ODT

$$H_{\theta}^{\mathcal{T}}[\mathbf{a}|\mathbf{s},\mathbf{g}] = \frac{1}{K} \mathbb{E}_{(\mathbf{s},\mathbf{g})\sim\mathcal{T}} \left[ H[\pi_{\theta}(\mathbf{a}|\mathbf{s},\mathbf{g})] \right]$$
$$= \frac{1}{K} \mathbb{E}_{(\mathbf{s},\mathbf{g})\sim\mathcal{T}} \left[ \sum_{k=1}^{K} H[\pi_{\theta}(a_{k}|\mathbf{s}_{-K,k},\mathbf{g}_{-K,k})] \right]$$

expected average entropy of consecutive K actions

#### Policy Entropy of SAC

$$\mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[ -\log(\pi_t(\mathbf{a}_t | \mathbf{s}_t)) \right]$$

expected per-action entropy

# Training Pipeline

- 1. Offline Pretraining: train a policy on logged dataset
- 2. Online Finetuning

Initialize the replay buffer by top logged trajectories

Repeat

- 1. Rollout a trajectory  $\tau = \{(g_t, s_t, a_t)\}_{t=1}^{|\tau|}$  with chosen exploration RTG  $g_1 = g_{\text{online}}$
- 2. Hindsight return relabeling: edit RTG tokens in  $\tau$  with observed reward  $g_t = \sum_{t'=t}^{|\tau|} r_{t'}$
- 3. Append  $\tau$  to the replay buffer and remove the oldest trajectory
- 4. Update the policy using data sampled from the replay buffer

# 03 Experiments

# Benchmark Comparison

| dataset                   | ODT (offline)    | ODT (0.2m)                         | $\delta_{ m ODT}$ | IQL (offline)     | IQL (0.2m)                          | $\delta_{ m IQL}$ |
|---------------------------|------------------|------------------------------------|-------------------|-------------------|-------------------------------------|-------------------|
| hopper-medium             | $66.95 \pm 3.26$ | $97.54 \pm 2.10$                   | 30.59             | $63.81 \pm 9.15$  | $66.79 \pm 4.07$                    | 2.98              |
| hopper-medium-replay      | $86.64 \pm 5.41$ | $88.89 \pm 6.33$                   | 2.25              | $92.13 \pm 10.43$ | $96.23 \pm 4.35$                    | 4.10              |
| walker2d-medium           | $72.19 \pm 6.49$ | $76.79 \pm 2.30$                   | 4.60              | $79.89 \pm 3.06$  | $\textbf{80.33} \pm \textbf{2.33}$  | 0.44              |
| walker2d-medium-replay    | $68.92 \pm 4.79$ | $\textbf{76.86} \pm \textbf{4.04}$ | 7.94              | $73.67 \pm 6.37$  | $70.55 \pm 5.81$                    | -3.12             |
| halfcheetah-medium        | $42.72 \pm 0.46$ | $42.16 \pm 1.48$                   | -0.56             | $47.37 \pm 0.29$  | $47.41 \pm 0.15$                    | 0.04              |
| halfcheetah-medium-replay | $39.99 \pm 0.68$ | $40.42 \pm 1.61$                   | 0.43              | $44.10\pm1.14$    | $44.14 \pm 0.3$                     | 0.04              |
| ant-medium                | $91.33 \pm 4.13$ | $90.79 \pm 5.80$                   | -0.54             | $99.92 \pm 5.86$  | $\textbf{100.85} \pm \textbf{2.02}$ | 0.93              |
| ant-medium-replay         | $86.56 \pm 3.26$ | $91.57 \pm 2.73$                   | 5.01              | $91.21 \pm 7.27$  | $91.36 \pm 1.47$                    | 0.15              |
| sum                       |                  | 605.02                             | 49.72             |                   | 597.66                              | 5.56              |
| antmaze-umaze             | $53.10 \pm 4.21$ | $\textbf{88.5} \pm \textbf{5.88}$  | 35.4              | $87.1 \pm 2.81$   | $\textbf{89.5} \pm \textbf{5.43}$   | 2.4               |
| antmaze-umaze-diverse     | $50.20 \pm 6.69$ | $\textbf{56.00} \pm \textbf{5.69}$ | 7.99              | $64.4 \pm 8.95$   | $\textbf{56.8} \pm \textbf{6.42}$   | -7.6              |
| sum                       |                  | 144.5                              | 43.39             |                   | 146.3                               | -5.2              |

Dataset: D4RL

Baseline: Implicit Q Learning (IQL, Kostrikov et al. 2021)

# Benchmark Comparison

| dataset                   | ODT (offline)    | ODT (0.2m)                         | $\delta_{ m ODT}$ | IQL (offline)     | IQL (0.2m)                          | $\delta_{ m IQL}$ |
|---------------------------|------------------|------------------------------------|-------------------|-------------------|-------------------------------------|-------------------|
| hopper-medium             | $66.95 \pm 3.26$ | $97.54 \pm 2.10$                   | 30.59             | $63.81 \pm 9.15$  | $66.79 \pm 4.07$                    | 2.98              |
| hopper-medium-replay      | $86.64 \pm 5.41$ | $88.89 \pm 6.33$                   | 2.25              | $92.13 \pm 10.43$ | $\textbf{96.23} \pm \textbf{4.35}$  | 4.10              |
| walker2d-medium           | $72.19 \pm 6.49$ | $76.79 \pm 2.30$                   | 4.60              | $79.89 \pm 3.06$  | $\textbf{80.33} \pm \textbf{2.33}$  | 0.44              |
| walker2d-medium-replay    | $68.92 \pm 4.79$ | $\textbf{76.86} \pm \textbf{4.04}$ | 7.94              | $73.67 \pm 6.37$  | $70.55 \pm 5.81$                    | -3.12             |
| halfcheetah-medium        | $42.72 \pm 0.46$ | $42.16 \pm 1.48$                   | -0.56             | $47.37 \pm 0.29$  | $47.41 \pm 0.15$                    | 0.04              |
| halfcheetah-medium-replay | $39.99 \pm 0.68$ | $40.42\pm1.61$                     | 0.43              | $44.10\pm1.14$    | $44.14 \pm 0.3$                     | 0.04              |
| ant-medium                | $91.33 \pm 4.13$ | $90.79 \pm 5.80$                   | -0.54             | $99.92 \pm 5.86$  | $\textbf{100.85} \pm \textbf{2.02}$ | 0.93              |
| ant-medium-replay         | $86.56 \pm 3.26$ | $91.57 \pm 2.73$                   | 5.01              | $91.21 \pm 7.27$  | $91.30 \pm 1.47$                    | 0.15              |
| sum                       |                  | 605.02                             | 49.72             |                   | 597.66                              | 5.56              |
| antmaze-umaze             | $53.10 \pm 4.21$ | $\textbf{88.5} \pm \textbf{5.88}$  | 35.4              | $87.1 \pm 2.81$   | $\textbf{89.5} \pm \textbf{5.43}$   | 2.4               |
| antmaze-umaze-diverse     | $50.20 \pm 6.69$ | $56.00 \pm 5.69$                   | 7.99              | $64.4 \pm 8.95$   | $56.8 \pm 6.42$                     | -7.6              |
| sum                       |                  | 144.5                              | 43.39             |                   | 146.3                               | -5.2              |
|                           |                  |                                    |                   |                   |                                     |                   |

Absolute Performance: ODT is better or comparable

# Benchmark Comparison

| dataset                   | ODT (offline)    | ODT (0.2m)                         | $\delta_{ m ODT}$ | IQL (offline)     | IQL (0.2m)                          | $\delta_{ m IQL}$ |
|---------------------------|------------------|------------------------------------|-------------------|-------------------|-------------------------------------|-------------------|
| hopper-medium             | $66.95 \pm 3.26$ | $97.54 \pm 2.10$                   | 30.59             | $63.81 \pm 9.15$  | $66.79 \pm 4.07$                    | 2.98              |
| hopper-medium-replay      | $86.64 \pm 5.41$ | $88.89 \pm 6.33$                   | 2.25              | $92.13 \pm 10.43$ | $\textbf{96.23} \pm \textbf{4.35}$  | 4.10              |
| walker2d-medium           | $72.19 \pm 6.49$ | $76.79 \pm 2.30$                   | 4.60              | $79.89 \pm 3.06$  | $\textbf{80.33} \pm \textbf{2.33}$  | 0.44              |
| walker2d-medium-replay    | $68.92 \pm 4.79$ | $\textbf{76.86} \pm \textbf{4.04}$ | 7.94              | $73.67 \pm 6.37$  | $70.55 \pm 5.81$                    | -3.12             |
| halfcheetah-medium        | $42.72 \pm 0.46$ | $42.16 \pm 1.48$                   | -0.56             | $47.37 \pm 0.29$  | $47.41 \pm 0.15$                    | 0.04              |
| halfcheetah-medium-replay | $39.99 \pm 0.68$ | $40.42 \pm 1.61$                   | 0.43              | $44.10\pm1.14$    | $44.14 \pm 0.3$                     | 0.04              |
| ant-medium                | $91.33 \pm 4.13$ | $90.79 \pm 5.80$                   | -0.54             | $99.92 \pm 5.86$  | $\textbf{100.85} \pm \textbf{2.02}$ | 0.93              |
| ant-medium-replay         | $86.56 \pm 3.26$ | $91.57 \pm 2.73$                   | 5.01              | $91.21 \pm 7.27$  | $91.36 \pm 1.47$                    | 0.15              |
| sum                       |                  | 605.02                             | 49.72             |                   | 597.66                              | 5.56              |
| antmaze-umaze             | $53.10 \pm 4.21$ | $\textbf{88.5} \pm \textbf{5.88}$  | 35.4              | $87.1 \pm 2.81$   | $\textbf{89.5} \pm \textbf{5.43}$   | 2.4               |
| antmaze-umaze-diverse     | $50.20 \pm 6.69$ | $\textbf{56.00} \pm \textbf{5.69}$ | 7.00              | $64.4 \pm 8.95$   | $\textbf{56.8} \pm \textbf{6.42}$   | -7.6              |
| sum                       |                  | 144.5                              | 43.39             |                   | 146.3                               | -5.2              |

Finetuning Gain: ODT is much better!

# Ablation Study

#### 03 EXPERIMENTS



Stochasticity is important to enable stable performance improvement in online training

#### 03 EXPERIMENTS



Hindsight return relabeling is critical for correcting bias in the collected data

#### 03 EXPERIMENTS



Fixed, large, (potentially) out-of-distribution return is good for  $g_{\text{online}}$  We use 2x expert performance

# 04 Summary and Open Problems

### Summary

- Blend offline pretraining with efficient online finetuning of sequence models for RL in a unified framework
- Supervised learning paradigm is of great potential in online settings

# Open Problems

#### 04 SUMMARY AND OPEN PROBLEMS

### Optimization

Could we establish the convergence guarantee of ODT?

#### 04 SUMMARY AND OPEN PROBLEMS

### Optimization

Generalization

Could we establish the convergence guarantee of ODT?

When will ODT perform well or poorly?

Could ODT account for purely online settings?

#### 04 SUMMARY AND OPEN PROBLEMS

### Optimization

Could we establish the convergence guarantee of ODT?

### Generalization

When will ODT perform well or poorly?

Could ODT account for purely online settings?

### BC vs Value

How does ODT, or, in general, online conditional BC algorithms, compare to value-based RL methods?

# Thanks!