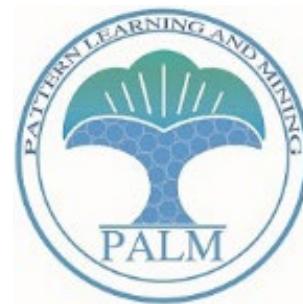


Dual Perspective of Label-Specific Feature Learning for Multi-Label Classification

Jun-Yi Hang, Min-Ling Zhang

Southeast University, China



ICML'22, BALTIMORE, MD

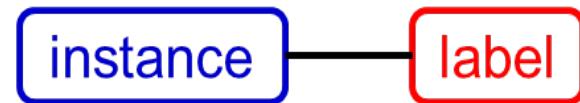
Outline

- **Introduction**
- The DELA Approach
- Experiments
- Conclusion

Multi-Label Classification (MLC)

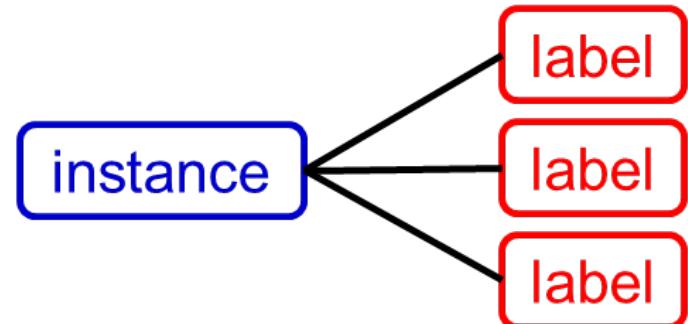
Traditional supervised classification

- ❑ Each instance only has one label



Multi-label classification (MLC)

- ❑ Each instance can have multiple labels simultaneously



Label-Specific Features (LSF)

Common strategy

- Binary decomposition
- Classification with the *identical representation*

Fail to consider each label's own discriminative properties!

Suboptimal

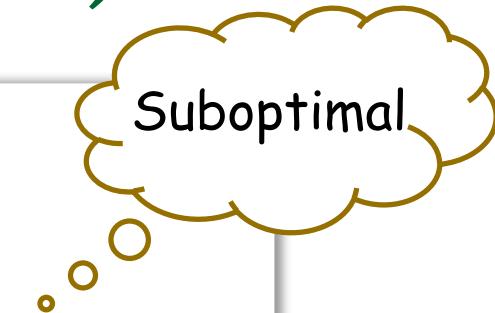
For example

- Recognizing *plane* category prefers *shape*-based features
- Recognizing *sky* category prefers *color*-based features
- ...

Label-Specific Features (LSF)

Common strategy

- ❑ Binary decomposition
- ❑ Classification with the *identical representation*



Fail to consider each label's own discriminative properties!

Improved strategy (LSF)

Facilitate the discrimination of each class label by *tailoring its own features*

- ✓ LSF - *The most pertinent and discriminative features for each class label*

For example

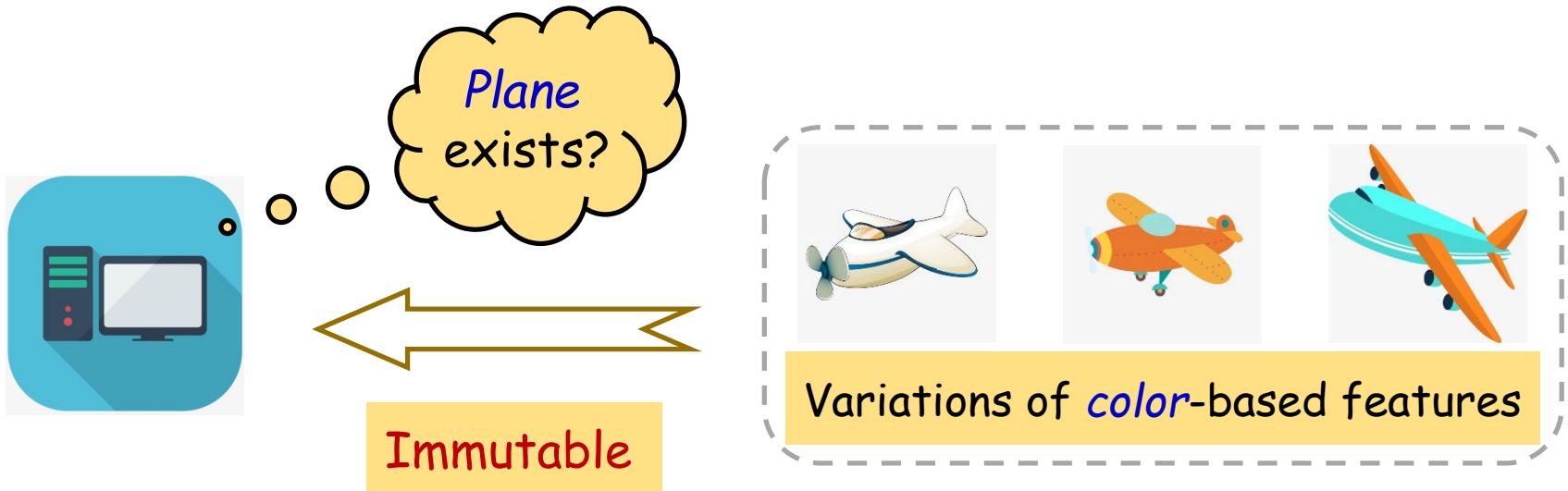
- ❑ Recognizing *plane* category prefers *shape*-based features
- ❑ Recognizing *sky* category prefers *color*-based features
- ❑ ...

Dual Perspective of LSF

Our proposal

Basic idea

- Identify *non-informative features* for each class label
- Endow classifiers with *immutability* on these identified features



Outline

- Introduction
- **The DELA Approach**
- Experiments
- Conclusion

Overview

To achieve

Goal 1: identify non-informative features

Goal 2: endow classifiers with immutability

With

Expected risk minimizing (ERM) problem

$$\min_{\phi, S, \theta, \Theta} \mathbb{E}_{p(\mathbf{x}, \mathbf{y}) p_{\theta}(\epsilon)} \left[\sum_{k=1}^t \mathcal{L}(f_k(e_{\phi}(\mathbf{x}) + \mathbf{i}_{S_k} \odot \epsilon; \theta_k), y_k) \right].$$

Perturb non-informative features with random noise

- S_k : a subset of identified non-informative features for the k^{th} label

Probabilistically Relaxed ERM

Original ERM problem

$$\min_{\phi, S, \vartheta, \Theta} \mathbb{E}_{p(\mathbf{x}, \mathbf{y}) p_{\vartheta}(\epsilon)} \left[\sum_{k=1}^t \mathcal{L}(f_k(e_{\phi}(\mathbf{x}) + \mathbf{i}_{S_k} \odot \epsilon; \theta_k), y_k) \right]$$

An intractable subset selection problem is involved!

Relaxed ERM problem

$$\min_{\phi, P, \vartheta, \Theta} \mathbb{E}_{p(\mathbf{x}, \mathbf{y}) p_{\vartheta}(\epsilon)} \left[\sum_{k=1}^t \mathbb{E}_{p(\mathbf{b}_k)} [\mathcal{L}(f_k(e_{\phi}(\mathbf{x}) + \mathbf{b}_k \odot \epsilon; \theta_k), y_k)] \right]$$

A discrete stochastic node is involved!

Further relaxed ERM problem

$$\min_{\phi, P, \vartheta, \Theta} \mathbb{E}_{p(\mathbf{x}, \mathbf{y}) p_{\vartheta}(\epsilon)} \left[\sum_{k=1}^t \mathbb{E}_{p(\mathbf{c}_k)} [\mathcal{L}(f_k(e_{\phi}(\mathbf{x}) + r(\mathbf{c}_k) \odot \epsilon; \theta_k), y_k)] \right]$$

Indicator vector of subset S_k

$$\mathbf{i}_{S_k} \in \{0, 1\}^{d_z}$$

Bernoulli gates

$$\mathbf{b}_k \in \{0, 1\}^{d_z}$$

$$p(\mathbf{b}_k) = \mathcal{B}(\mathbf{p}_k)$$

Concrete gates

$$\mathbf{c}_k \in [0, 1]^{d_z}$$

$$p(\mathbf{c}_k) = \mathcal{C}(\mathbf{p}_k, \tau)$$

Constraint on Noise Level

Expected discrepancy to target noise level

$$\mathbb{E}_{p(\mathbf{c}_k)}[KL(p_{\phi, \vartheta}(\mathbf{z}_k | \mathbf{x}, \mathbf{c}_k) || q(\mathbf{z}_k))]$$

- $p_{\phi, \vartheta}(\mathbf{z}_k | \mathbf{x}, \mathbf{c}_k)$: distribution of perturbed stochastic features for the k^{th} label
- $q(\mathbf{z}_k)$: an instance-agnostic prior distribution

Sufficient perturbation endows classifiers with immutability

Overall objective function

$$\begin{aligned} \min_{\phi, P, \vartheta, \Theta} \mathbb{E}_{p(\mathbf{x}, \mathbf{y})} \sum_{k=1}^t \mathbb{E}_{p(\mathbf{c}_k)} & \left[\mathbb{E}_{p(\mathbf{z}_k | \mathbf{x}, \mathbf{c}_k)} [\mathcal{L}(f_k(\mathbf{z}_k; \boldsymbol{\theta}_k), y_k)] \right. \\ & \left. + \beta \cdot KL(p(\mathbf{z}_k | \mathbf{x}, \mathbf{c}_k) || q(\mathbf{z}_k)) \right] \end{aligned}$$

Information Theory Explanation

Connection to the information bottleneck

Corollary. *The overall objective function of DELA is an upper bound of the label-wise **information bottlenecks**, when the loss function $\mathcal{L}(\cdot, \cdot)$ is instantiated by cross entropy loss*

$$\begin{aligned} & \sum_{k=1}^t -I(\mathbf{z}_k; y_k) + \beta \cdot I(\mathbf{z}_k; \mathbf{x}) \\ & \leq \mathbb{E}_{p(\mathbf{x}, \mathbf{y})} \sum_{k=1}^t \mathbb{E}_{p(\mathbf{c}_k)} \left[\mathbb{E}_{p(\mathbf{z}_k | \mathbf{x}, \mathbf{c}_k)} [-\log q(y_k | \mathbf{z}_k)] \right. \\ & \quad \left. + \beta \cdot KL(p(\mathbf{z}_k | \mathbf{x}, \mathbf{c}_k) || q(\mathbf{z}_k)) \right] \end{aligned}$$

Discrimination process in DELA conforms to the **optimal information transportation** process from x to y !

Outline

- Introduction
- The DELA Approach
- **Experiments**
- Conclusion

Experimental Setup

Comparing Approaches

LIFT, LLSF, C2AE, MPVAE, CLIF, PACA

Evaluation Metrics

Average precision, Macro-averaging AUC,
Hamming loss, One-error, Coverage, Ranking loss

Evaluation Protocol

Ten-fold cross-validation + Wilcoxon signed-ranks test

Experimental Setup – Con't

Data Sets

Ten benchmark multi-label data sets

Dataset	$ \mathcal{D} $	$dim(\mathcal{D})$	$L(\mathcal{D})$	$F(\mathcal{D})$	$LCard(\mathcal{D})$	Domain
corel5k	5000	499	374	Nominal	3.522	Images ¹
rcv1-s1	6000	944	101	Numeric	2.880	Text ¹
Corel16k-s1	13766	500	153	Nominal	2.859	Images ¹
delicious	16105	500	983	Nominal	19.020	Text ¹
iaprtc12	19627	1000	291	Numeric	5.719	Images ²
espgame	20770	1000	268	Numeric	4.686	Images ²
mirflickr	25000	1000	38	Numeric	4.716	Images ²
tmc2007	28596	981	22	Nominal	2.158	Text ¹
mediamill	43907	120	101	Numeric	4.376	Video ¹
bookmarks	87856	2150	208	Nominal	2.028	Text ¹

$|\mathcal{D}|$: #Examples

$dim(\mathcal{D})$: #Features

$L(\mathcal{D})$: #Labels

$F(\mathcal{D})$: Feature type

$LCard(\mathcal{D})$: Average

#labels per instance

¹ <http://mulan.sourceforge.net/datasets.html>

² <http://lear.inrialpes.fr/people/guillaumin/data.php>

Comparative Studies

Summary of the Wilcoxon signed-ranks test for DELA against other comparing approaches at 0.05 significance level
(p-values are shown in the brackets)

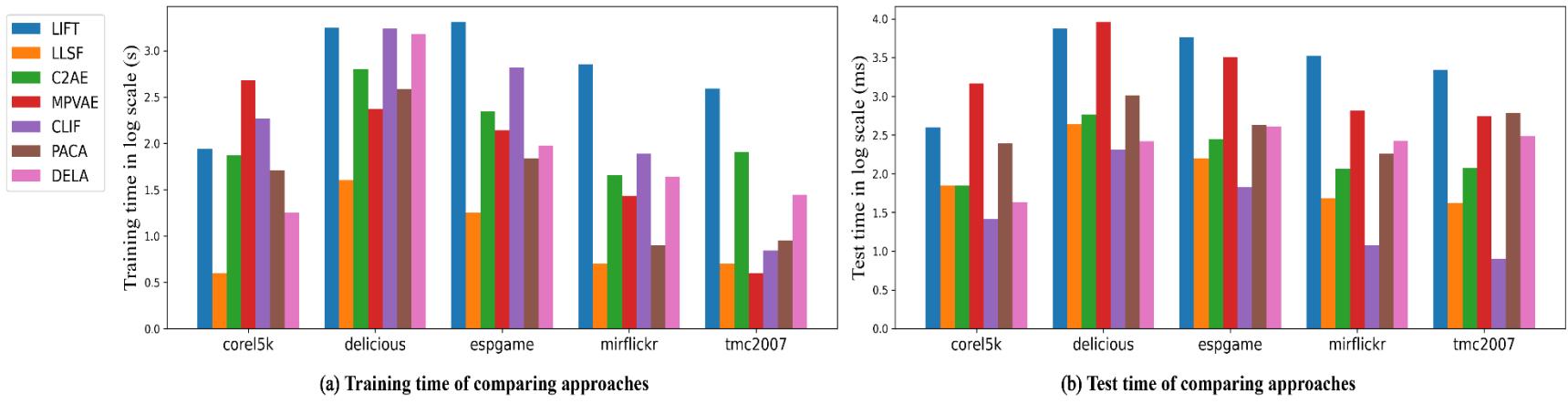
DELA against	LIFT	LLSF	C2AE	MPVAE	CLIF	PACA
<i>Average precision</i>	win [0.0020]					
<i>Macro-averaging AUC</i>	win [0.0020]	tie [0.0059]				
<i>Hamming loss</i>	win [0.0352]	win [0.0313]	win [0.0020]	win [0.0078]	win [0.0117]	win [0.0020]
<i>One-error</i>	win [0.0020]	win [0.0039]				
<i>Coverage</i>	win [0.0020]					
<i>Ranking loss</i>	win [0.0020]					

DELA vs. Others ranks 1st in 92% cases

achieves statistically superior performance

Empirical Running Time

Running time (training/test) of each comparing approach on six benchmark data sets



DELA vs. Others comparable in time overhead

Outline

- Introduction
- The DELA Approach
- Experiments
- Conclusion

Conclusion

Main Contributions

- Propose *a dual perspective* for label-specific feature learning by *endowing classifiers with immutability on identified label-specific non-informative features*
- Provide justification with information theory

Future Work

Explore alternative implementations towards the promising dual perspective

Thanks !