

Antibody-Antigen Docking and Design via Hierarchical Equivariant Refinement

Wengong Jin (Eric and Wendy Schmidt Center, Broad Institute)
Regina Barzilay, Tommi Jaakkola (MIT CSAIL)

A fundamental problem in immunology and therapeutic design

• Antibodies bind to antigens (e.g., viral proteins) and trigger immune response

- Antibodies bind to antigens (e.g., viral proteins) and trigger immune response
- The binding affinity is governed by the 3D binding interface where antibody residues (paratope) closely interact with antigen residues (epitope).

- Antibodies bind to antigens (e.g., viral proteins) and trigger immune response
- The binding affinity is governed by the 3D binding interface where antibody residues (paratope) closely interact with antigen residues (epitope).

- Antibodies bind to antigens (e.g., viral proteins) and trigger immune response
- The binding affinity is governed by the 3D binding interface where antibody residues (paratope) closely interact with antigen residues (epitope).

- Antibodies bind to antigens (e.g., viral proteins) and trigger immune response
- The binding affinity is governed by the 3D binding interface where antibody residues (paratope) closely interact with antigen residues (epitope).

A tale of two problems: docking and generation

Binding affinity

Antibodies

- <u>Docking</u>: given an antibody paratope sequence and epitope 3D structure, can we predict whether/how they bind?
 - An accurately docked paratope allows us to easily calculate its binding affinity

- <u>Docking</u>: given an antibody paratope sequence and epitope 3D structure, can we predict whether/how they bind?
 - An accurately docked paratope allows us to easily calculate its binding affinity
- Generation: can we generate a paratope with high binding affinity to a given epitope?
 - This inverse problem is difficult due to a combinatorial search space of 20^{N}

- <u>Docking</u>: given an antibody paratope sequence and epitope 3D structure, can we predict whether/how they bind?
 - An accurately docked paratope allows us to easily calculate its binding affinity
- Generation: can we generate a paratope with high binding affinity to a given epitope?
 - This inverse problem is difficult due to a combinatorial search space of 20^{N}
- Goal: design a unified model for both tasks

- <u>Docking</u>: given an antibody paratope sequence and epitope 3D structure, can we predict whether/how they bind?
 - An accurately docked paratope allows us to easily calculate its binding affinity
- Generation: can we generate a paratope with high binding affinity to a given epitope?
 - This inverse problem is difficult due to a combinatorial search space of 20^{N}
- Goal: design a unified model for both tasks

Antibody-Antigen Docking

Formulation: point cloud completion

Antibody-Antigen Docking

Formulation: point cloud completion

 Given a given epitope points and a paratope sequence, a model needs to put paratope atoms at the right location

- Simultaneously fold and dock a paratope onto a given epitope
- We update coordinates iteratively by computing forces between residues/atoms
- Motivation: force is equivariant under rotation and translation

- Simultaneously fold and dock a paratope onto a given epitope
- We update coordinates iteratively by computing <u>forces</u> between residues/atoms
- Motivation: force is equivariant under rotation and translation

Main innovation: hierarchical equivariance

Step 1: Encode residues and atoms by a hierarchical message passing network

- Step 1: Encode residues and atoms by a hierarchical message passing network
- Step 2: Compute residue-level force between C_{lpha} atoms for global backbone update

- Step 1: Encode residues and atoms by a hierarchical message passing network
- Step 2: Compute residue-level force between C_{lpha} atoms for global backbone update
- Step 3: Compute atom-level forces within each residue for local side-chain update

- <u>Docking</u>: given an antibody paratope sequence and epitope 3D structure, can we predict whether/how they bind?
 - An accurately docked paratope allows us to easily calculate its binding affinity

- Generation: can we generate an paratope with high binding affinity to a given epitope?
 - This inverse problem is difficult due to a combinatorial search space

Epitope-specific Antibody Generation

Formulation: point cloud completion

- Similar to docking, the generation task can also be viewed as point cloud completion
- We only need to slightly adapt the docking workflow for paratope generation

HERN Paratope Generation Procedure

Main innovation: geometric hidden state representation

- HERN generates paratope autoregressively by adding one residue at a time
- Different from standard RNNs, each HERN hidden state is a paratope-epitope complex rather than a partial paratope sequence
- In each generation step, we use the docking model to infer the geometric hidden state from a partial paratope sequence

Evaluation: Docking Performance

Does our docked structure agree with the ground truth?

- Baseline: we fold a paratope sequence using IgFold (Ruffolo & Gray, 2022) and dock it using the HDOCK model (Yan et al., 2020)
- We report the DockQ metric (Basu & Wallner 2016) over a test set of 60 antibodyantigen complexes (Adolf-Bryfogle et al., 2018)

Evaluation: Docking Performance

Does our docked structure agree with the ground truth?

- Baseline: we fold a paratope sequence using IgFold (Ruffolo & Gray, 2022) and dock it using the HDOCK model (Yan et al., 2020)
- We report the DockQ metric (Basu & Wallner 2016) over a test set of 60 antibodyantigen complexes (Adolf-Bryfogle et al., 2018)

Evaluation: Docking Performance

Does our docked structure agree with the ground truth?

- Baseline: we fold a paratope sequence using IgFold (Ruffolo & Gray, 2022) and dock it using the HDOCK model (Yan et al., 2020)
- We report the DockQ metric (Basu & Wallner 2016) over a test set of 60 antibodyantigen complexes (Adolf-Bryfogle et al., 2018)

Evaluation: Generation Performance

Is our generate paratope close to the ground truth?

- Baseline 1: sequence-based RNN
- Baseline 2: structure-based
 RefineGNN (Jin et al., 2021)
- Both models employ a GNN-based epitope encoder and attention layers to <u>condition</u> on the epitope
- We report the amino acid recovery (AAR) metric on the same test set
- AAR = percentage of residues matching the ground truth

Evaluation: Generation Performance

Is our generate paratope close to the ground truth?

- Baseline 1: sequence-based RNN
- Baseline 2: structure-based
 RefineGNN (Jin et al., 2021)
- Both models employ a GNN-based epitope encoder and attention layers to <u>condition</u> on the epitope
- We report the amino acid recovery (AAR) metric on the same test set
- AAR = percentage of residues matching the ground truth

Evaluation: Generation Performance

Can we discover new paratopes better than native binders?

Calculate interaction energy of generated paratopes and compare with native ones

Summary and Acknowledgement

We propose HERN for paratope docking and design, whose key innovations are:

- Simultaneous folding and docking v.s. rigid-body docking
- Hierarchical equivariance via residue/atom-level force update
- Geometric hidden states for sequence generation

Summary and Acknowledgement

We propose HERN for paratope docking and design, whose key innovations are:

- Simultaneous folding and docking v.s. rigid-body docking
- Hierarchical equivariance via residue/atom-level force update
- Geometric hidden states for sequence generation

