Efficient Reinforcement Learning in Block MDPs: A Model-free Representation Learning Approach

Xuezhou Zhang*, Yuda Song, Masatoshi Uehara, Mengdi Wang, Alekh Agarwal, and Wen Sun

Empirical RL for large-scale problems

[AlphaGo, Silver et.al, 15]

[OpenAl Five, 18]

[OpenAI,19]

Rich (nonlinear) function approximation + RL can work well w/ enough samples

Can we design provably efficient algorithms for

Rich Function Approx + RL?

Can we design provably efficient algorithms for Rich Function Approx + RL?

Block MDP

Block MDP

Decoder: for any $s \in \mathcal{S}, z = \psi^*(s)$.

Latent Transition: $z' \sim T^*(\cdot | z, a)$

Emission: $s' \sim o^*(\cdot | z')$

1. Data collection using the current policy: $\pi := \{\pi_1, \dots, \pi_H\}$, for all h:

1. Data collection using the current policy: $\pi := \{\pi_1, \ldots, \pi_H\}$, for all h:

$$s \sim d_h^{\pi}, a \sim U(A), s' \sim P_h^{\star}(s, a), D_h = D_h \cup \{s, a, s'\}$$

$$s \sim d_{h-1}^{\pi}, a \sim U(A), s' \sim P_{h-1}^{\star}(s, a), a' \sim U(A), s'' \sim P_h^{\star}(s, a), \quad D_h' = D_h' \cup \{s', a', s''\}$$

1. Data collection using the current policy: $\pi := \{\pi_1, ..., \pi_H\}$, for all h:

$$s \sim d_h^{\pi}, a \sim U(A), s' \sim P_h^{\star}(s, a), D_h = D_h \cup \{s, a, s'\}$$

$$s \sim d_{h-1}^{\pi}, a \sim U(A), s' \sim P_{h-1}^{\star}(s, a), a' \sim U(A), s'' \sim P_h^{\star}(s, a), \quad D_h' = D_h' \cup \{s', a', s''\}$$

2. Run Representation Learning subprotocol with the \mathcal{D}_h and \mathcal{D}_h'

$$\hat{\phi}_h = \text{RepLearn}(\mathcal{D}_h \cup \mathcal{D}'_h, \Phi)$$

1. Data collection using the current policy: $\pi := \{\pi_1, ..., \pi_H\}$, for all h:

$$s \sim d_h^{\pi}, a \sim U(A), s' \sim P_h^{\star}(s, a), D_h = D_h \cup \{s, a, s'\}$$

$$s \sim d_{h-1}^{\pi}, a \sim U(A), s' \sim P_{h-1}^{\star}(s, a), a' \sim U(A), s'' \sim P_h^{\star}(s, a), \quad D_h' = D_h' \cup \{s', a', s''\}$$

2. Run Representation Learning subprotocol with the \mathcal{D}_h and \mathcal{D}_h'

$$\hat{\phi}_h = \text{RepLearn}(\mathcal{D}_h \cup \mathcal{D}_h', \Phi)$$

3.(Linear bandit style) bonus under $\hat{\phi}$:

$$b_h(s,a) = c\sqrt{\hat{\phi}_h(s,a)\Sigma_h^{-1}\hat{\phi}_h(s,a)}, \quad \Sigma_h = \sum_{s,a \in \mathcal{D}_h} \hat{\phi}_h(s,a)\hat{\phi}_h(s,a)^\top + \lambda I$$

1. Data collection using the current policy: $\pi := \{\pi_1, ..., \pi_H\}$, for all h:

$$s \sim d_h^{\pi}, a \sim U(A), s' \sim P_h^{\star}(s, a), D_h = D_h \cup \{s, a, s'\}$$

$$s \sim d_{h-1}^{\pi}, a \sim U(A), s' \sim P_{h-1}^{\star}(s, a), a' \sim U(A), s'' \sim P_h^{\star}(s, a), \quad D_h' = D_h' \cup \{s', a', s''\}$$

2. Run Representation Learning subprotocol with the \mathcal{D}_h and \mathcal{D}_h'

$$\hat{\phi}_h = \text{RepLearn}(\mathcal{D}_h \cup \mathcal{D}_h', \Phi)$$

3.(Linear bandit style) bonus under $\hat{\phi}$:

$$b_h(s,a) = c\sqrt{\hat{\phi}_h(s,a)\Sigma_h^{-1}\hat{\phi}_h(s,a)}, \quad \Sigma_h = \sum_{s,a \in \mathcal{D}_h} \hat{\phi}_h(s,a)\hat{\phi}_h(s,a)^\top + \lambda I$$

4. Run Least-square VI with $\hat{\phi}_h$, $\mathcal{D}_h \cup \mathcal{D}'_h$, r+b

Oracle Efficient Algorithms

	Sample Complexity	Model-based?	Reward?
FLAMBE [Agarwal et al., 2020]	$H^{22}d^7A^9e^{-10}$	Model-based	Reward-free
MOFFLE [Modi et al., 2021]	$H^8d^7A^{13}\epsilon^{-2}\eta_{\min}^{-1}$	Model-free	Reward-free
HOMER [Misra et al., 2019]	$H \mathcal{Z} ^8 A^4 \epsilon^{-2} \eta_{\min}^{-3}$	Model-free	Reward-free
REP-UCB [Uehara, 2021]	$H^5d^4A^2e^{-2}$	Model-based	Reward-driven
BRIEE [this work]	$H^9 \mathcal{Z} ^8 A^{14} \epsilon^{-4}$	Model-free	Reward-driven

Oracle Efficient Algorithms

	Sample Complexity	Model-based?	Reward?
FLAMBE [Agarwal et al., 2020]	$H^{22}d^7A^9e^{-10}$	Model-based	Reward-free
MOFFLE [Modi et al., 2021]	$H^8d^7A^{13}e^{-2}\eta_{\min}^{-1}$	Model-free	Reward-free
HOMER [Misra et al., 2019]	$H \mathcal{Z} ^8A^4\epsilon^{-2}\eta_{\min}^{-3}$	Model-free	Reward-free
REP-UCB [Uehara, 2021]	$H^5d^4A^2e^{-2}$	Model-based	Reward-driven
BRIEE [this work]	$H^9 \mathcal{Z} ^8 A^{14} \epsilon^{-4}$	Model-free	Reward-driven

1. Lifting Linear MDP to kernel is not enough (i.e., linear RL theory fails here..)

- 1. Lifting Linear MDP to kernel is not enough (i.e., linear RL theory fails here..)
- 2. Implicit Rep learning via deep RL (PPO) is not enough (i.e., deep rl fails here..)

- 1. Lifting Linear MDP to kernel is not enough (i.e., linear RL theory fails here..)
- 2. Implicit Rep learning via deep RL (PPO) is not enough (i.e., deep rl fails here..)
- 3. Heuristic deep exploration approach (RND) fails..

References

- BRIEE paper: https://arxiv.org/pdf/2202.00063.pdf
- BRIEE code: code: https://github.com/yudasong/briee