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Empirical RL for large-scale problems

[AlphaGo, Silver et.al, 15] [OpenAI Five, 18] [OpenAI,19]

Rich (nonlinear) function approximation + RL can work well w/ enough samples



Can we design provably efficient algorithms for  
Rich Function Approx + RL ?
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Our solution:

Representation Learning:

ϕ(s, a) ∈ ℝd

using ϕ



Block MDP



Block MDP

Decoder:                   for any  

Latent Transition:       

Emission:                  

s ∈ 𝒮, z = ψ⋆(s) .

z′ ∼ T⋆( ⋅ |z, a)

s′ ∼ o⋆( ⋅ |z′ )
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Oracle Efficient Algorithms

Sample Complexity Model-based ? Reward?

FLAMBE [Agarwal et 
al., 2020]

Model-based Reward-free

MOFFLE [Modi et al., 
2021]

Model-free Reward-free

HOMER [Misra et al., 
2019]

Model-free Reward-free

REP-UCB [Uehara, 
2021]

Model-based Reward-driven

BRIEE [this work] Model-free Reward-driven
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Reachability
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Efficient DeepRL Implementation

1. Lifting Linear MDP to kernel 
is not enough (i.e., linear RL 
theory fails here..)

2. Implicit Rep learning via 
deep RL (PPO) is not enough 
(i.e., deep rl fails here..)

3. Heuristic deep exploration 
approach (RND) fails..
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