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Problem Setting

Consider the statistical learning setting:

e iidsamples S, ={z;,..,2z,} ~ D";

e A randomized algorithm A works with S,, creating a distribution over
hypotheses: A(S,,);

e For distribution P over hypothesis, expected population and empirical loss:

Lp(P) 2 E..pE,p[l(w,2)], Ls(P) 2 ZEWP 0(w, 2)];
e The generalization error:

gen(A(S,)) = Lp(A(Sn)) — Ls(A(S,))



Noisy Iterative Algorithms

Given S,, and realization of past iterates Wy.;_; = wy.;—1, @ NOISY iterative algorithm

updates parameter by
Wi ~ PBta§t|‘w0:(t—1) (W)

where the distribution has two sources of randomness:

1) Stochastic mini-batch of samples Sg,_with batch size b, drawn uniformly at

random with replacement;
2) Noise &; suitably added in the iterations.



Generalization Bound based on Le Cam Style Divergence

Under mild assumptions, for noisy iterative algorithm we have

Egen(A(S,)| < c>_B JZ K LSD(Pyl[[F))

?ISn zy Wo.t—1)

where Le Cam Style Divergence

LSD(Py[|[P}) := &

&t

measures the distance of output Pg_ ¢, Pl;tftrun onsS,,S,.

e The bound is based on expected stability instead of uniform stability;
e The bound can be extended to high probability bound.



Exponential Family Langevin Dynamics

We propose EFLD using exponential family noise: for smooth convex function ¥

Wy = Wt—1 — Pt& ; ﬁt ~ Pw(@ eBt,Cﬁt)7
93,6 vg(wt—l;SBt)

where pw(g;QBt’at) — exp((f’QBt,aJ—w(egt’at))ﬂ'o,a(g)a eBt,at = @, — @

EFLD becomes 1) SGLD when exponential family is Gaussian

W = Wt-1 —mVE(wt 1,SBt)—|—N(O Ut )

2) Noisy Sign-SGD when exponential family is Skewed Rademacher distribution
W = Wi—1 — Nt

(14 tanh(0B, a.,;))

where 1 with prob.
(1 —tanh(0B, a:,;))

St = —1 with prob.

D= DO



Generalization Bound for EFLD

With data dependent scale parameter a;|, under some mild assumptions:

T 2
c VI (wi—1,2n) — VE(wi—1, 2],
[Bgen(A(S.))] < — S””"*"Jz g IVE(wi1,20) (w1, 25

— Wo:t-1) 05,?|

Comparison to some previous work for SGLD:

e Gradient discrepancy < gradient norm in Li et al.(2020).
e Sample dependence 1/n is sharper than 1/4/n in Negrea et al. (2019)

EFLD and its bound can be extended to anisotropic noise.



Optimization Guarantees for EFLD

We provide optimization guarantees for two variants of EFLD:

e For SGLD, result is similar to previous work [Bassily et al.,2014; Wang & Xu, 2019];
e For Noisy Sign-SGD, we provide novel optimization guarantee: under assumptions,

the full/mini-batch noisy sign-SGD satisfies 0(1/+/T) convergence rate.



Comparison to Existing Bounds

Our bound is sharper compared to existing bounds across dataset and settings:
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Training Error

Random Label Experiment

We consider the effect of random label motivated by Zhang et al. (2017). We show
increase random labels = increase gradient discrepancy = increase bound.
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Convergence and Generalization of Noisy Sign-SGD

Our result shows Noisy Sign-SGD matches performance of vanilla Sign-SGD when
a; 1S suitably small. And our bound successfully bounds the empirical test error.
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Thanks for watching!

The research was supported by NSF grants IIS 21-31335, OAC 21-30835, DBI 20-21898, and a C3.ai research award. We would like to
thank the reviewers for valuable comments and the Minnesota Supercomputing Institute (MSI) for computational resources and support.



