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The Barycentric Coding Model

Given p measures µ1, ..., µp

and a coordinate λ with λi ≥ 0,
∑

i λi = 1
the Wasserstein barycenter is defined

νλ = argminν

p∑
i=1

λiW
2
2 (µi , ν).

The barycentric coding model
is the set of all minimizers as λ varies:

Bary({µi}pi=1) =

{
νλ : λi ≥ 0,

∑
i

λi = 1

}
.
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Measure Estimation

Given a new measure µ0, observed through a noisy µ̃0.

Find the “best approximation” to µ̃0 by a member of Bary({µi}pi=1).

Use this measure as an estimate µ̂0 = νλ.

Figure: Left: References {µi}3i=1, Center: Noisy observation µ̃0, Right: Estimated
µ̂0 = νλ
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Objective

We would like to solve

min
λ∈R+:

∑
i λi=1

W 2
2 (νλ, µ̃0) (1)

which requires solving

min
λ

W 2
2

(
argminν

p∑
i=1

λiW
2
2 (µi , ν), µ̃0

)
(2)

Difficult nested optimization problem.
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Alternative Characterization

A measure µ0 is a Karcher mean of {µi}pi=1 for coordinate λ if it satisfies∫ 〈 p∑
i=1

λi (Ti (x)− x),

p∑
j=1

λj(Tj(x)− x)

〉
dµ0(x) = 0, (3)

where Ti is the optimal map from µ0 to µi . Under technical conditions
barycenters are equivalent to Karcher means. Introducing the matrix
A ∈ Rp×p with entries

Aij =

∫
⟨Ti (x)− x ,Tj(x)− x⟩ dµ0(x).

we can write (3) = λTAλ.
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First Questions

Given a set of reference measures µ1, ..., µp and a new measure µ0, can we

1 Determine if µ0 ∈ Bary({µi}pi=1) or not?

2 If so, can we recover the coordinate λ?
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First Questions

Given a set of reference measures µ1, ..., µp and a new measure µ0, can we

1 Determine if µ0 ∈ Bary({µi}pi=1) or not?

2 If so, can we recover the coordinate λ?

Theorem 1

Under suitable conditions, then the value of

min
λ∈R+:

∑
i λi=1

λTAλ

is 0 if and only if µ0 ∈ Bary({µi}pi=1). If µ0 ∈ Bary({µi}pi=1) then
µ0 = νλ∗ where λ∗ is the minimizer.
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Working with Random Samples

What if we can only draw i.i.d. samples from each µ0, ..., µp?

Corollary 2

Under the appropriate technical conditions

E[∥λ̂− λ∗∥22] ≲
1√
n
+ n

− α+1
4(d′+α+1)

√
log n

where λ̂ is the coordinate estimated using samples and λ∗ is the true
minimizer and n is the number of samples used in the estimate.

Three step procedure

1 Using Entropically regularized OT to estimate {Ti}pi=1.

2 Using the estimated maps, estimate the entries Aij .

3 Solve a convex QP.

The most expensive part is estimating {Ti}pi=1 - still cheap using Sinkhorn
iterations.
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Applications

We apply our approach in three settings

1 Covariance Estimation

2 Document Topic Classification

3 Image Denoising
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