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Why are Cyclical Data Interesting?

* Many predictive models are trained on data with cyclical properties.
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Why are Cyclical Data Interesting?

* Mechanisms that routinely repeat themselves result in periodicity.

Recommender systems: user lifestyle.
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* Research question:

Can we exploit periodicity to improve prediction performance?



* Research question:

Can we exploit periodicity to improve prediction performance?

* Focus: large models, streaming training.
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Problem Setup: Streaming Training

Data Arrival Model Serving

* Procedure: a 4 step cycle.

Streaming Training

* Goal: serve with the best model for every t.

Data Recording

Solve f{(x) € argminE, ,y.p, [¢(f(z),y)] VteR Model Update
f

e z, feature; y, label; ¢, time.
e f., model; ¢, loss function.
e D, time-dependent data distribution.

e ', periodicity, i.e. Dy = D;_.



Problem Setup: Streaming Training

Data Arrival Model Serving

* Procedure: a 4 step cycle.

Streaming Training

* Goal: serve with the best model for every t.

Data Recording

Solve f: (1’) c argmin ]E(w,y)NDt [f(f(m), y)] Vit € R Model Update
f

o z, feature; y, label; ¢, time. - _ .
Challenge: data distribution continuously evolves over time.

e f., model; ¢, loss function.
Good news: the data arriving at time t come from the same
e D,, time-dependent data distribution. distribution as t-T.

e T, periodicity, i.e. Dy =Dy . Question: how to access past information in streaming training?




Existing Approaches

e Streaming training: does not exploit periodicity.
* Learned model has a lag.
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Existing Approaches
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e Streaming training: does not exploit periodicity.
* Learns a set of models with a lag. .
5 Time

* Increasing model capacity (adding a time feature).

* Requires feature engineering.

* Hard to adapt to other models.
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e Streaming training: does not exploit periodicity.
e Learns a set of models with a lag. Time
* Increasing model capacity (adding a time feature).

* Requires feature engineering.

* Hard to adapt to other models. Weight Optimal
* Improving streaming training framework. Pluralistic ( ) (2 models)
* Pluralistic [1]: learns a model for every t. ﬁ ﬁ ﬁ ﬁ —>
* Hard to scale, approximation error. V V Tlme

[1] Eichner, Hubert, et al. “Semi-cyclic stochastic gradient descent.” ICML, 2019.



Our Approach: Fourier Learning

* Learns a frequency representation instead.
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* Learns a frequency representation instead.
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Our Approach: Fourier Learning

* Learns a frequency representation instead.
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Fourier Learning (frequency domain)
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N
fn(x,t) = bo(x) + Z [an (x) sin (M) + bn(x) cos (2ﬂnt)] « Learning goal: learn a,(x) and b, ().




Our Approach: Fourier Learning

* Integration with deep learning: Fourier-MLP.
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Our Approach: Fourier Learning

* Integration with deep learning: Fourier-MLP.
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Our Approach: Fourier Learning

* Integration with deep learning: Fourier-MLP.

Final Output
dim =1
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*
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a,(x) and b,(x) come from the last layer of MLP.
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Our Approach: Fourier Learning

* Advantages:

* Provably converges to a fixed optimal under streaming training.

 Easily integrable with neural networks and adapts to a wide variety of models.

e Disadvantage:

* Requires data distribution to be strictly periodic. [2]

[2] Fan, Wei, et al. “DEPTS: Deep expansion learning for periodic time series forecasting.” ICLR, 2022.
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