

Fourier Learning with Cyclical Data

Presenter: Yingxiang Yang

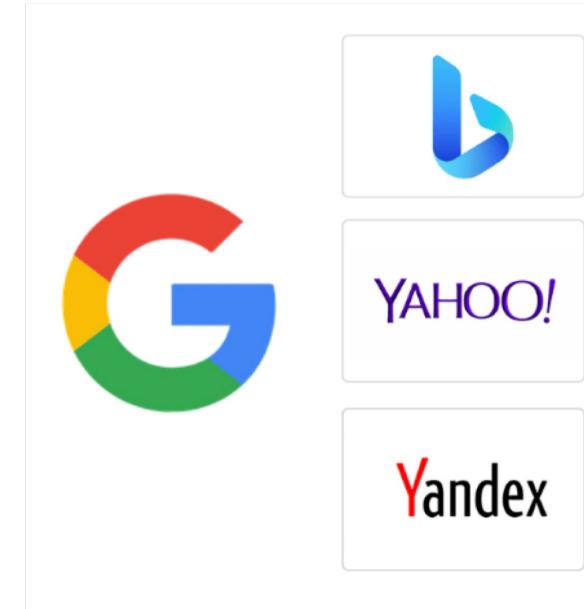
A joint work with: Zhihan Xiong, Tianyi Liu, Taiqing Wang, Chong Wang

Why are Cyclical Data Interesting?

- Many predictive models are trained on data with cyclical properties.

Recommender Systems

Financial Markets

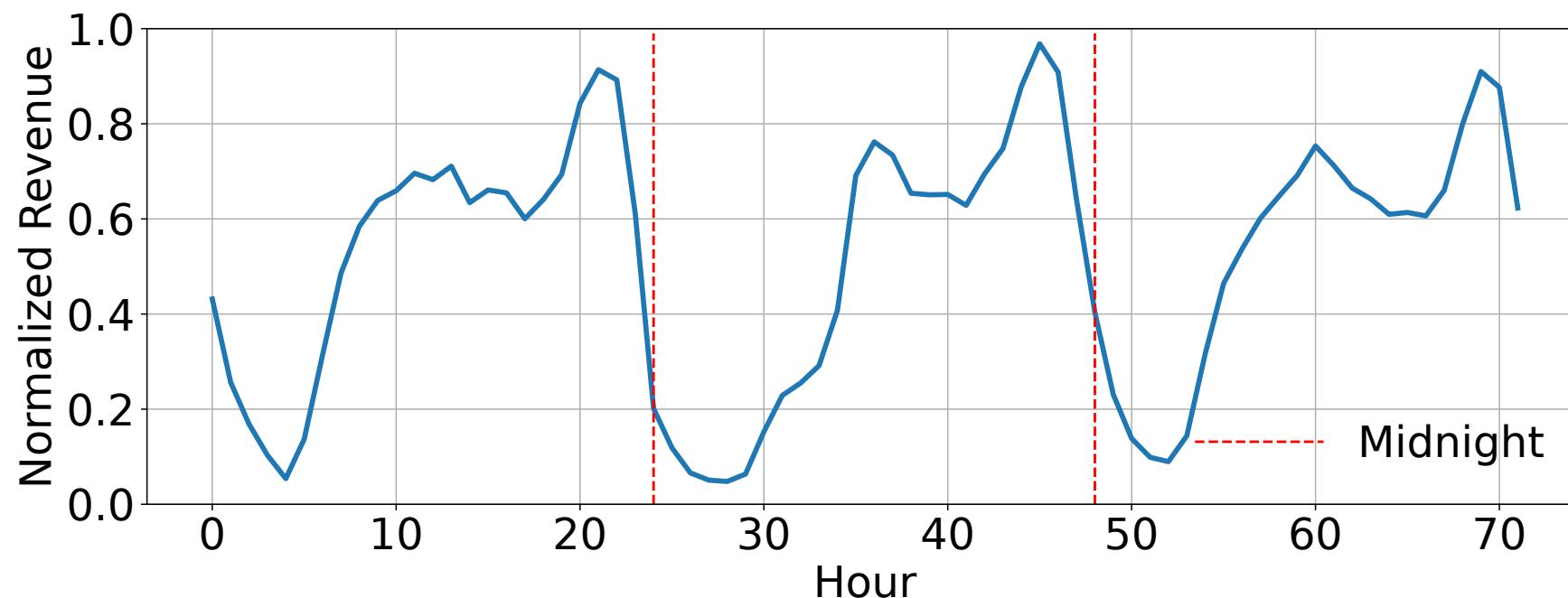


Search Engines

Why are Cyclical Data Interesting?

- Mechanisms that routinely repeat themselves result in periodicity.

Recommender systems: user lifestyle.



- Research question:

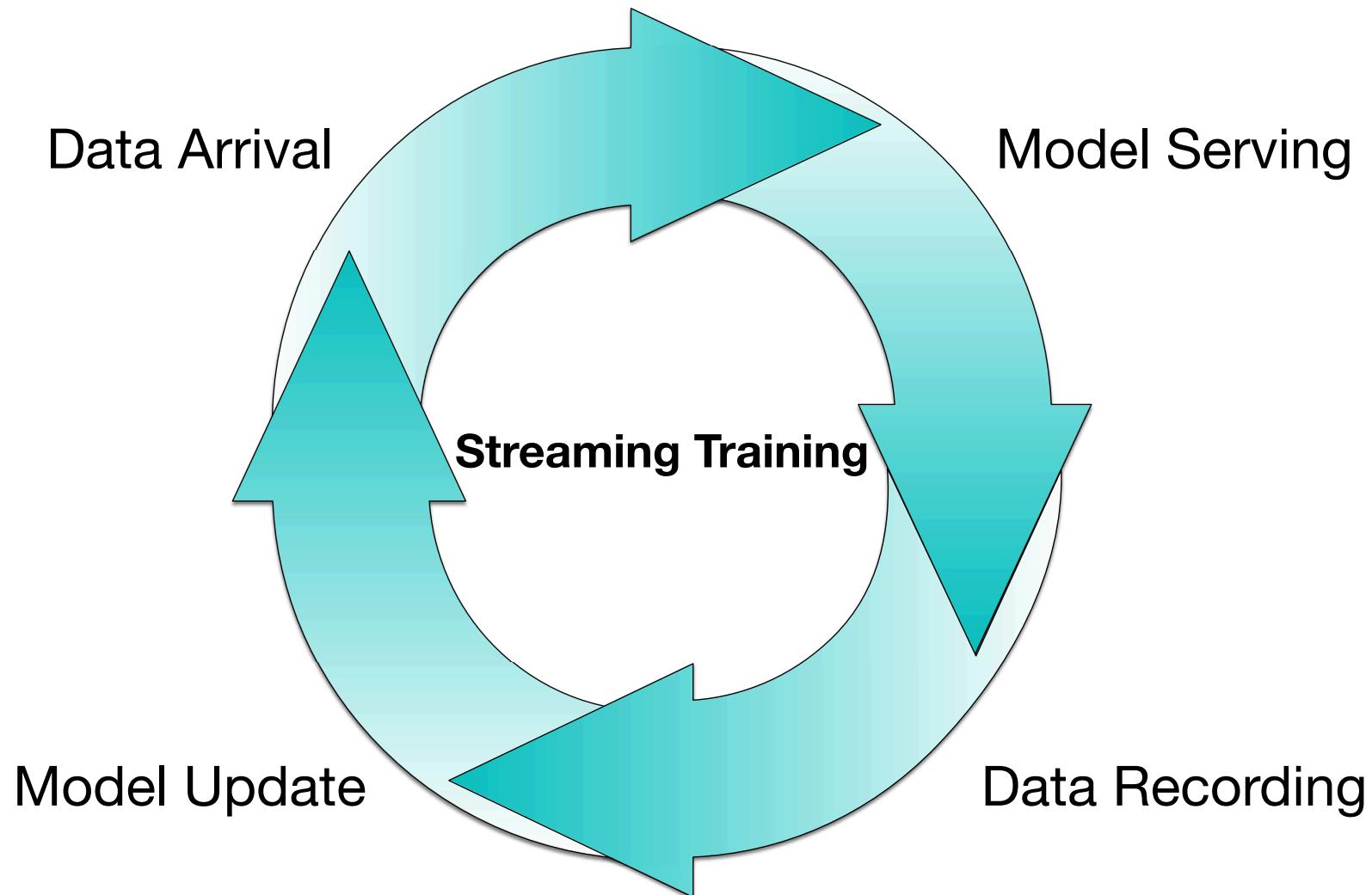
Can we exploit periodicity to improve prediction performance?

- Research question:

Can we exploit periodicity to improve prediction performance?

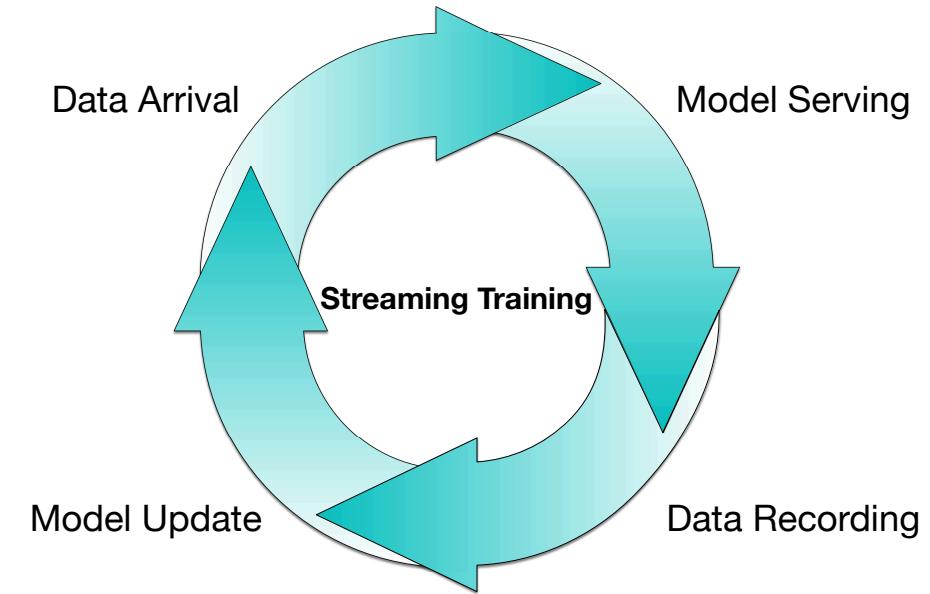
- Focus: large models, streaming training.

Problem Setup: Streaming Training



Problem Setup: Streaming Training

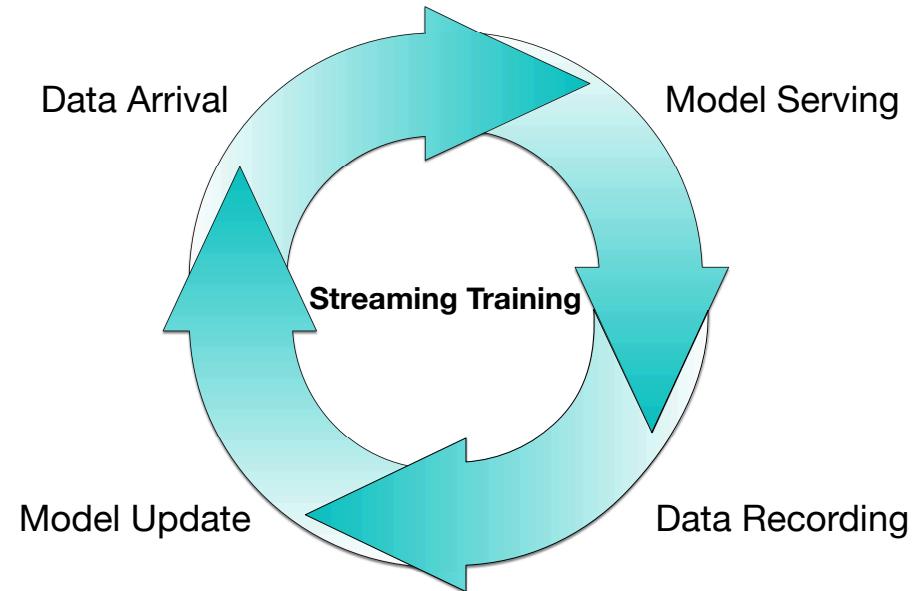
- Procedure: a 4 step cycle.



Problem Setup: Streaming Training

- Procedure: a 4 step cycle.
- Goal: **serve with the best model for every t .**

Solve $f_t^*(x) \in \operatorname{argmin}_f \mathbb{E}_{(x,y) \sim \mathcal{D}_t} [\ell(f(x), y)] \quad \forall t \in \mathbb{R}$

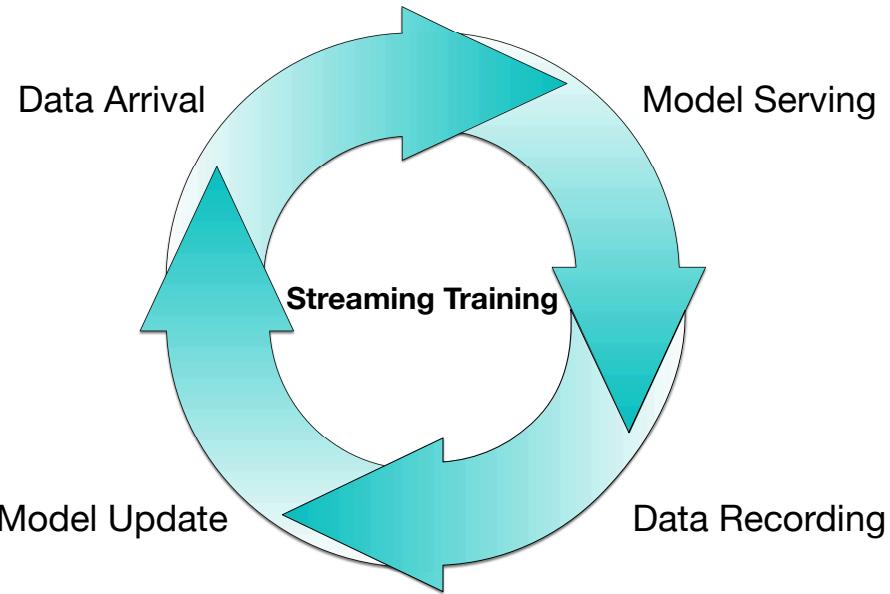


- x , feature; y , label; t , time.
- f , model; ℓ , loss function.
- \mathcal{D}_t , time-dependent data distribution.
- T , **periodicity**, i.e. $\mathcal{D}_t = \mathcal{D}_{t-T}$.

Problem Setup: Streaming Training

- Procedure: a 4 step cycle.
- Goal: serve with the best model for every t .

$$\text{Solve } f_t^*(x) \in \operatorname{argmin}_f \mathbb{E}_{(x,y) \sim \mathcal{D}_t} [\ell(f(x), y)] \quad \forall t \in \mathbb{R}$$



- x , feature; y , label; t , time.
- f , model; ℓ , loss function.
- \mathcal{D}_t , time-dependent data distribution.
- T , **periodicity**, i.e. $\mathcal{D}_t = \mathcal{D}_{t-T}$.

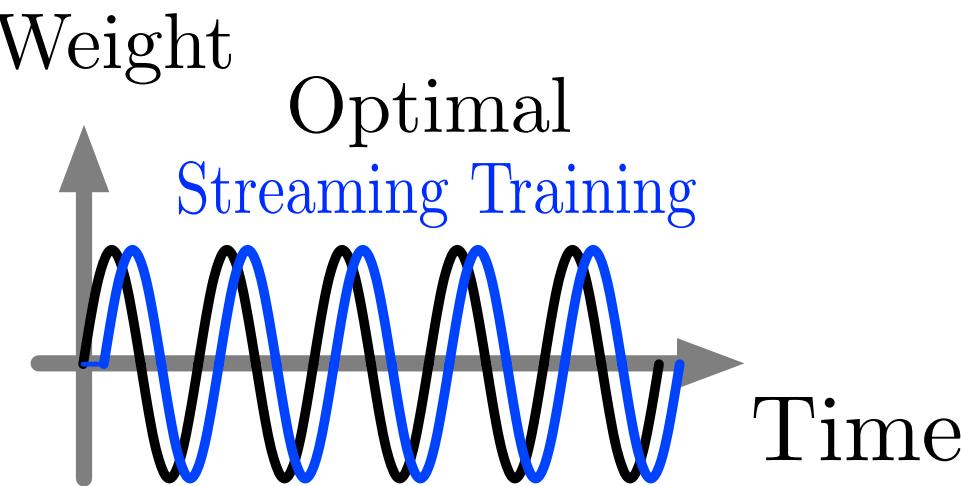
Challenge: data distribution continuously evolves over time.

Good news: the data arriving at time t come from the same distribution as $t-T$.

Question: how to access past information in streaming training?

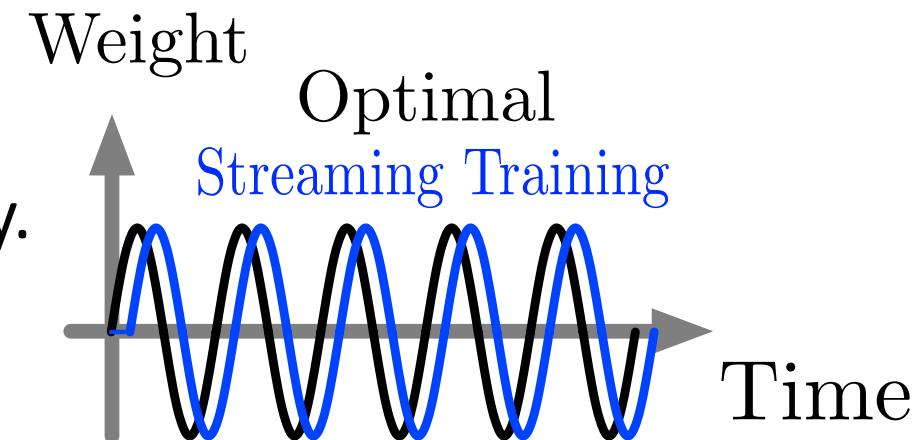
Existing Approaches

- **Streaming training: does not exploit periodicity.**
 - Learned model has a lag.



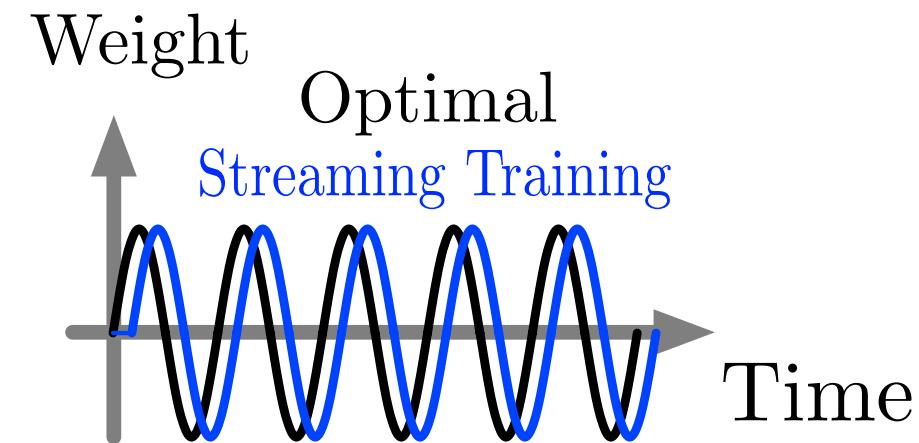
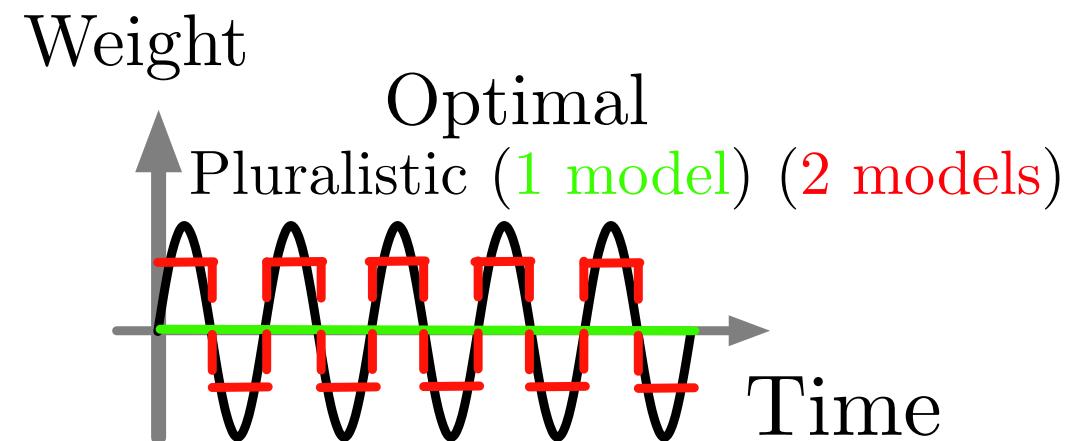
Existing Approaches

- Streaming training: does not exploit periodicity.
 - Learns a set of models with a lag.
- **Increasing model capacity (adding a time feature).**
 - Requires feature engineering.
 - Hard to adapt to other models.



Existing Approaches

- Streaming training: does not exploit periodicity.
 - Learns a set of models with a lag.
- Increasing model capacity (adding a time feature).
 - Requires feature engineering.
 - Hard to adapt to other models.
- **Improving streaming training framework.**
 - **Pluralistic [1]:** learns a model for every t .
 - Hard to scale, approximation error.



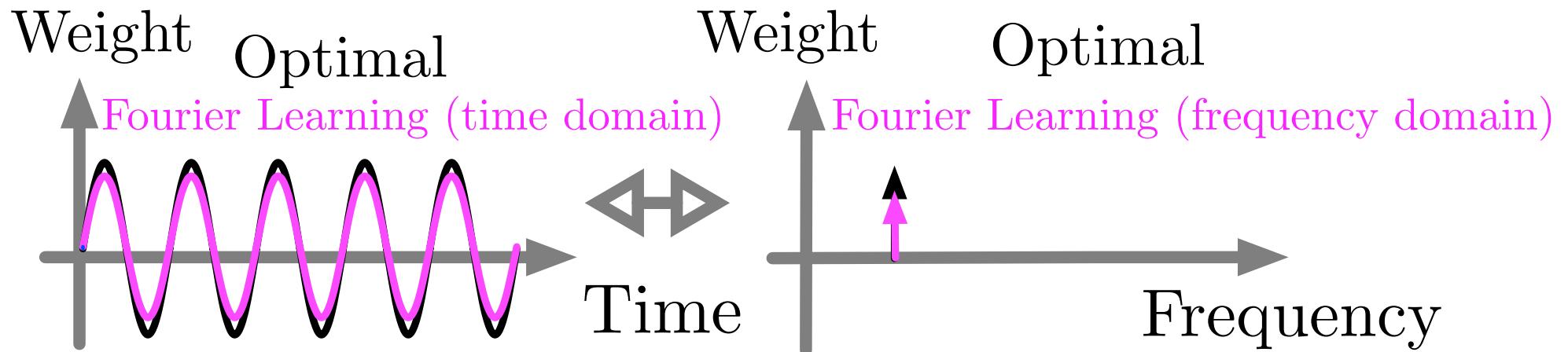
[1] Eichner, Hubert, et al. "Semi-cyclic stochastic gradient descent." ICML, 2019.

Our Approach: Fourier Learning

- **Learns a frequency representation instead.**

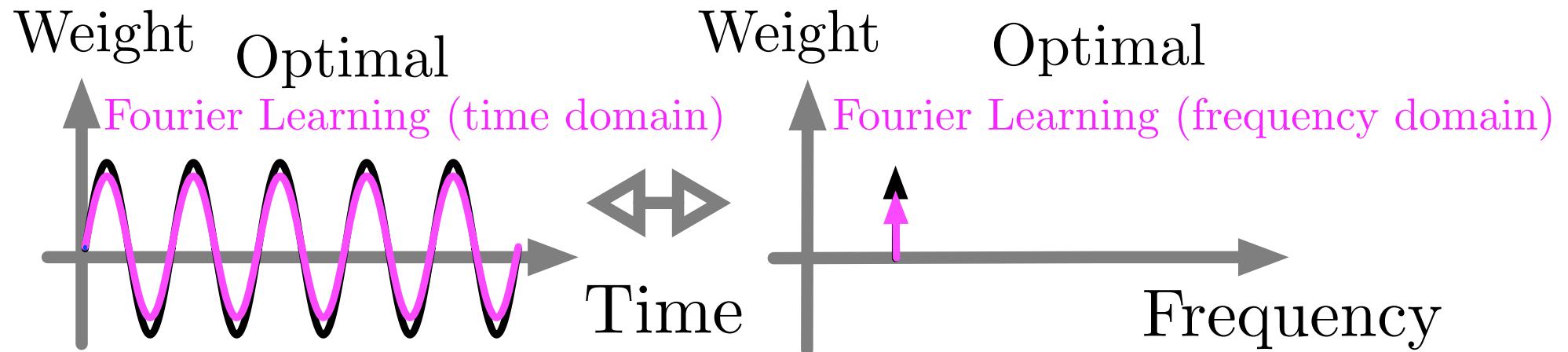
Our Approach: Fourier Learning

- **Learns a frequency representation instead.**



Our Approach: Fourier Learning

- **Learns a frequency representation instead.**

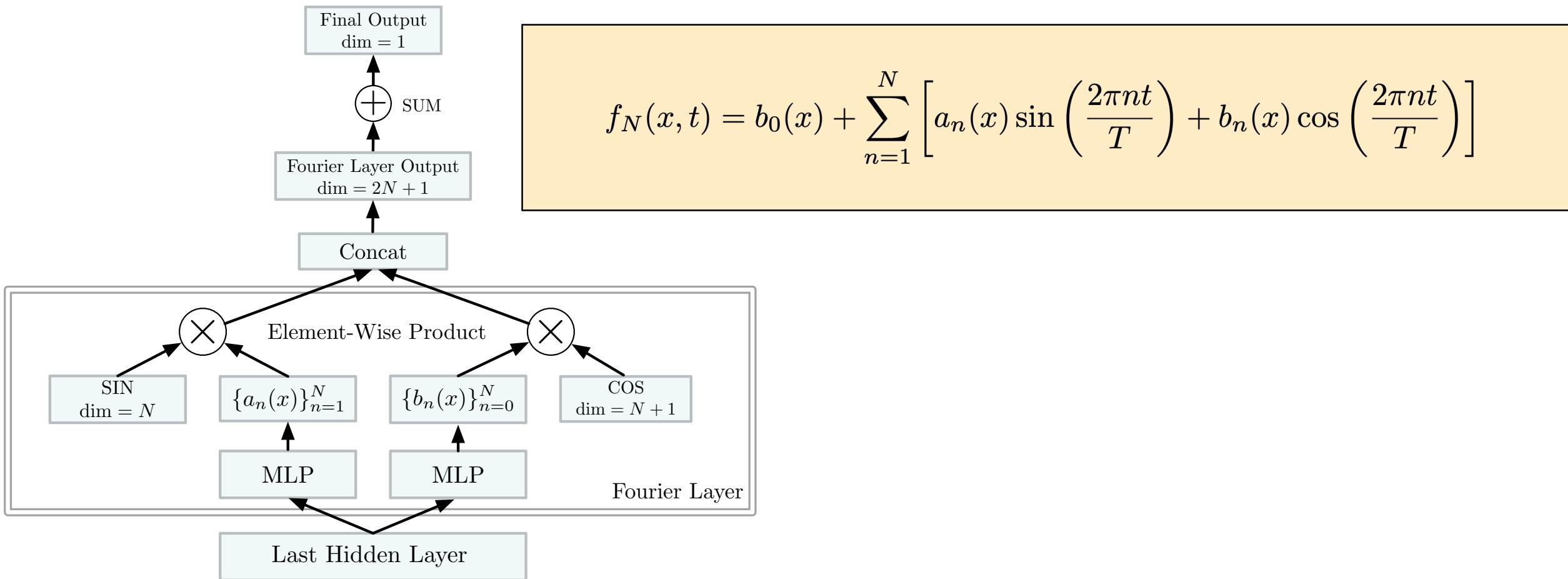


$$f_N(x, t) = b_0(x) + \sum_{n=1}^N \left[a_n(x) \sin \left(\frac{2\pi n t}{T} \right) + b_n(x) \cos \left(\frac{2\pi n t}{T} \right) \right]$$

- Learning goal: learn $a_n(x)$ and $b_n(x)$.

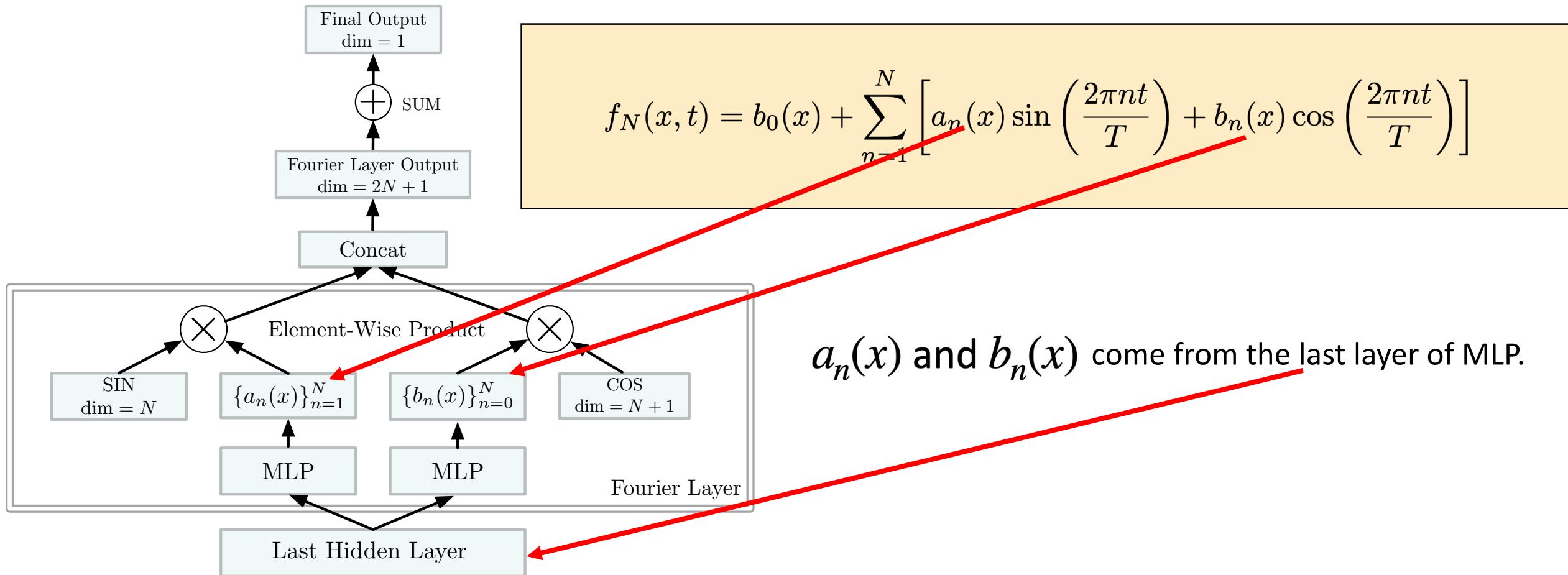
Our Approach: Fourier Learning

- Integration with deep learning: Fourier-MLP.



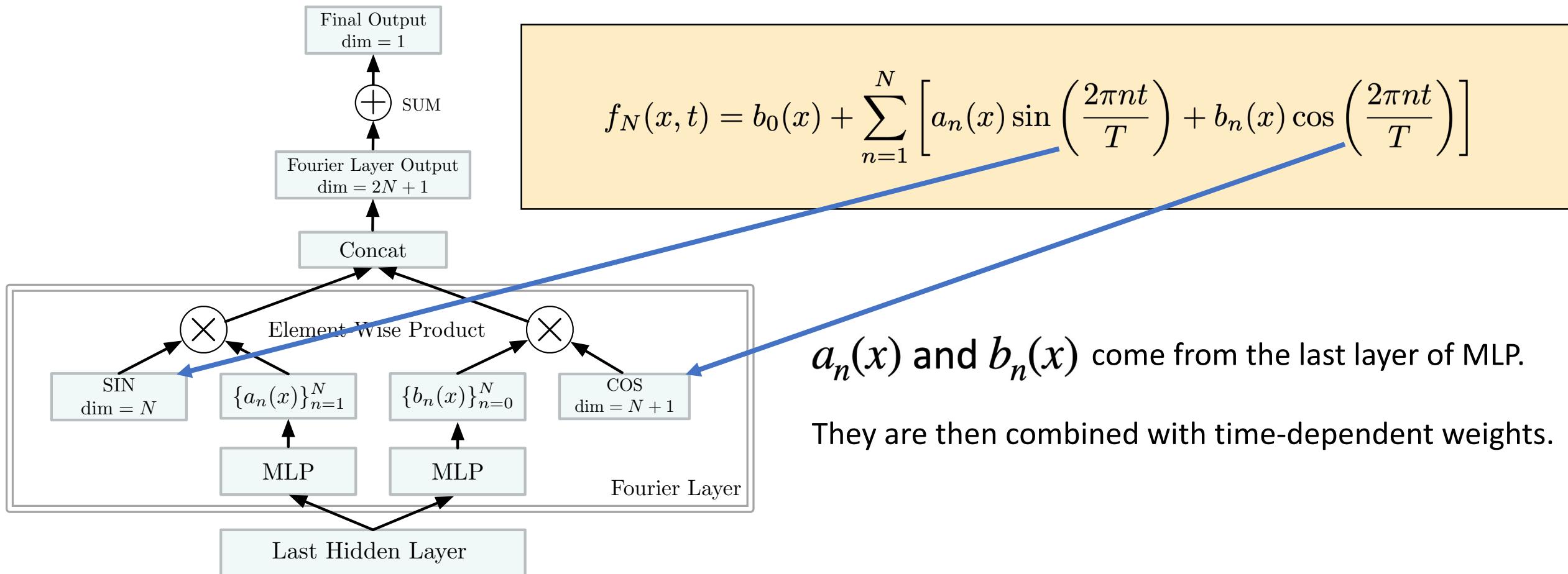
Our Approach: Fourier Learning

- Integration with deep learning: Fourier-MLP.



Our Approach: Fourier Learning

- Integration with deep learning: Fourier-MLP.



Our Approach: Fourier Learning

- Advantages:
 - Provably converges to a fixed optimal under streaming training.
 - Easily integrable with neural networks and adapts to a wide variety of models.
- Disadvantage:
 - Requires data distribution to be strictly periodic. [2]

[2] Fan, Wei, et al. “DEPTS: Deep expansion learning for periodic time series forecasting.” ICLR, 2022.

More details at our poster
session.