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Background

● Out of Distribution Generalization (OoD)
○ Test & Train have different distributions

○ In many settings, there exists multiple different 
training environments 

○ The invariant feature (e.g. digits) works consistently on 

all training environments.  

○ The spurious feature (e.g. color) doesn’t. 

● OoD Generalization Algorithms
○ Finding the invariant feature by adding  penalties.

ColoredMNIST [1]

Class 0

Class 1

Train

Test

Class 0

Class 1



3

Optimization-generalization Dilemma

● Dilemma: A strong generalization goal in OoD, e.g. seeking an 

invariant representation (IRM), leads to an optimization 

difficulty.
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Illustration of the Dilemma on ColoredMNIST 

● Test the influence of network 
initialization on 9 OOD 
methods. 

● All 9 methods depend on 
choosing the right initialization.

● The OoD penalties are too 
strong to optimize reliably!
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Illustration of the Dilemma on ColoredMNIST 

● How about learning from a 
“perfect” initialization? 
(where only the invariant 
feature is well learned)

● No methods can maintain 
the OoD performance. 

● OoD penalties are too weak 
to enforce invariance 
constraints!

Figure 2: Test performance of OoD methods as a function of training epochs. Six OoD 
methods are trained from a ‘perfect’ initialization where only the robust feature is well 
learned. The blue star indicates the initial test accuracy.



6

Optimization-generalization Dilemma

● The OoD problems associated with current OoD algorithms are 

highly non-convex than usual. 

● Optimization becomes super hard. 
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Rich Feature Construction (called Bonsai)

● Core Idea: starting from a representation with rich features 

reduces the optimization difficulty. 
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Rich Feature Construction (called Bonsai)

● Bonsai creates such a rich representation by impeding the 

learning process.  

representation A up-weigh wrong examples Representation B

Merge (distillation)

● A distributionally robust optimization version avoids the 

heuristic reweighting  and saves the distillation time. 

inference train

Idea-illustration version

Practical version
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Camelyon17 tumor classification

● Training set contains tumor/non-tumor images 

from three hospitals.  Test set comes from 

another hospital.  

● Three OoD methods, vREx[2], IRMv1[1], 

CLOvE[3], are trained either on a ERM pretrained 

representation or the proposed Bonsai rich 

representation. 

●  “-cf”: only the top layer classifier is trainable.  
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