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Background

e Out of Distribution Generalization (OoD)

O

O

O

Test & Train have different distributions

In many settings, there exists multiple different
training environments

The invariant feature (e.g. digits) works consistently on
all training environments.

The spurious feature (e.g. color) doesn't.

e OoD Generalization Algorithms

O

Finding the invariant feature by adding penalties.
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Optimization-generalization Dilemma

e Dilemma: A strong generalization goal in OoD, e.g. seeking an
invariant representation (IRM), leads to an optimization
difficulty.



Illustration of the Dilemma on ColoredMNIST

e Testthe influence of network

initialization on 9 OOD
methods.

All 9 methods depend on

choosing the right initialization.

The OoD penalties are too
strong to optimize reliably!
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Figure 1. Test performance of nine penalized OoD methods as
a function of the number of epochs used to pre-train the neural
network with ERM. The final OoD testing performance is very
dependent on choosing the right number of pretraining epochs,
illustrating the challenges of these optimization problems.



Illustration of the Dilemma on ColoredMNIST

How about learning from a
“perfect” initialization?
(where only the invariant
feature is well learned)

No methods can maintain
the OoD performance.

OoD penalties are too weak
to enforce invariance
constraints!
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Figure 2: Test performance of OoD methods as a function of training epochs. Six OoD
methods are trained from a ‘perfect’ initialization where only the robust feature is well
learned. The blue star indicates the initial test accuracy.




Optimization-generalization Dilemma

e The OoD problems associated with current OoD algorithms are
highly non-convex than usual.

e Optimization becomes super hard.



Rich Feature Construction (called Bonsai)

e Coreldea: starting from a representation with rich features
reduces the optimization difficulty.



Rich Feature Construction (called Bonsai)

S

e Bonsaicreates such arich representation by impeding the
learning process.
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{ Merge (distillation) ] Idea-illustration version

e Adistributionally robust optimization version avoids the
heuristic reweighting and saves the distillation time. Practical version



Camelyon17 tumor classification
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Three OoD methods, vVREx[2], IRMv1[1], 1o W DO

CLOVE[3], are trained either on a ERM pretrained °:{-

representation or the proposed Bonsai rich

representation.
“cf”: only the top layer classifier is trainable. s
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