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Oftline Imitation Learning from Observations

Reinforcement Learning with Online Interactions

| e (Few) expert observations: D¥ = {(sq, ..., s7)}

Environment

e Offline non-expert dataset: D° = {(s,a,s’)}

Objective: Dy (d” (s)||dE (s))

Offline IL: m = A(D¥,D9)

Environment

)

& Penn Engineering 2



How can we leverage small number of expert
observations and large amount of unlabeled
offline data to achieve offline imitation learning?
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Objective: State Occupancy Matching

min Dxy,(d” (s)]|d” (s))

“distribution of task-relevant states the policy visits”
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Versatility of State-Occupancy Matching

Mismatchedl Experts
Observations
Examples of Success
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Imitation Learning from Examples

min Dxr, (d" (s)||d ,(\8))

“state distribution of a teleporting expert”

Dynamics abiding imitator

PPV el Sl

"‘ j) “Teleporting” expert (xv
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Offline Imitation Learning from via State Matching

e Formulated as a state—matching prob‘

Dkr(d"(s)[[d"(s))

* Key challenge is that this objective requires samp!

the policy we are optimizing

— E,

dﬂ'

€I

log

d™(s) |

d(s)._

e Difficult to do offline without access to the

environment!
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Regularized State-Occupancy Matching

Under some mild assumptions, for any f-divergence such that Dy > Dy,

o S
i (7(5)]05(5)) < Eufi] 1o (G ) | + Do )d(5.)

|

“reward function™: encourages “constraint™: encourages staying
visiting expert states; learned using  close to the offline dataset
a discriminator!

Still requires on-policy samples!
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State Matching Offline DIstribution Correction Estimation (SMODICE)

Os
Dir, (d™(s)||d¥ (s)) < Egmgr [log (ZEES;>] + D¢ (d™(s,a)||d (s, a))

Dual problem depends only

i |
Inputs SMODICE on offline data! Output

(Expert data dE Offline data do\ [ 2. Train Value Function \ /" Learned

| | behavior *
.’a‘ 1[5 _ *

- 1. Train Discriminator 3. Train Policy via Weighted Regression

V| B e -
G ——1 \& 1 C y,

© 3 Disjoint Optimization Steps
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Questions

1. Can SMODICE effectively learn from observations?

2. How robust is SMODICE to mismatched experts ?

3. Can SMODICE learn from examples of success outcomes?
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1. Oftline Imitation Learning from Observations

Outperforms state-of-art with Normalized Return on 6 Continuous Control Tasks

privileged action information! ..
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Figure 2. Illustrations of the evaluation environments. 20 -
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2. Oftline IL from Mismatched Experts
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2. Oftline IL from Mismatched Experts
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Figure 5. Offline imitation learning from heterogeneous experts results.

SMODICE is most robust to mismatched experts!
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Success Rate
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3. Oftline IL from Examples

(a) PointMass-4Direction

PointMass-4Direction

(b) AntMaze
AntMaze from Example

(c) Kettle |
Kitchen Kettle

(d) Microwave

Kitchen Microwave
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Figure 6. Offline imitation learning from examples results.




Conclusion

* State-matching as a framework for versatile offline IL
* SMODICE: A Regression-Based Oftline IL Algorithm

e State-of-art results in all three settings without any

hyperparameter tuning!
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Project Website:

https://sites.google.com/view/smodice/home
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