Versatile Offline Imitation from Observations and Examples via Regularized State Occupancy Matching

Jason Yecheng Ma, Andrew Shen, Dinesh Jayaraman, Osbert Bastani University of Pennsylvania

Offline Imitation Learning from Observations

Reinforcement Learning with Online Interactions

Offline Reinforcement Learning

- (Few) expert observations: $\mathcal{D}^E = \{(s_0, ..., s_T)\}$
- Offline non-expert dataset: $\mathcal{D}^O = \{(s, a, s')\}$
- Objective: $D_{KL}(d^{\pi}(s)||d^{E}(s))$
- Offline IL: $\pi = \mathcal{A}(\mathcal{D}^E, \mathcal{D}^O)$

How can we leverage small number of expert observations and large amount of unlabeled offline data to achieve offline imitation learning?

Objective: State Occupancy Matching

"distribution of task-relevant states the policy visits"

Versatility of State-Occupancy Matching

Imitation Learning from Examples

$$\min_{\pi} \mathrm{D_{KL}}(d^{\pi}(s) \| d^{E}(s))$$

"state distribution of a teleporting expert"

Dynamics-abiding imitator

Offline Imitation Learning from via State Matching

• Formulated as a state-matching problem:

$$D_{\mathrm{KL}}(d^{\pi}(s)||d^{E}(s)) = \mathbb{E}_{s \sim d^{\pi}} \left[\log \frac{d^{\pi}(s)}{d^{E}(s)} \right]$$

- Key challenge is that this objective requires samples from the policy we are optimizing
- Difficult to do offline without access to the environment!

Regularized State-Occupancy Matching

Under some mild assumptions, for any f-divergence such that $D_f \geq D_{KL}$,

$$D_{KL}(d^{\pi}(s)||d^{E}(s)) \leq \mathbb{E}_{s} d^{\pi} \left[\log \left(\frac{d^{O}(s)}{d^{E}(s)} \right) \right] + D_{f}(d^{\pi}(s,a)||d^{O}(s,a))$$

"reward function": encourages visiting expert states; learned using a discriminator!

"constraint": encourages staying close to the offline dataset

Still requires on-policy samples!

State Matching Offline DIstribution Correction Estimation (SMODICE)

© 3 Disjoint Optimization Steps

Experiments

Questions

- 1. Can SMODICE effectively learn from observations?
- 2. How robust is SMODICE to mismatched experts?
- 3. Can SMODICE learn from examples of success outcomes?

1. Offline Imitation Learning from Observations

Outperforms state-of-art with privileged action information!

Figure 2. Illustrations of the evaluation environments.

2. Offline IL from Mismatched Experts

2. Offline IL from Mismatched Experts

Figure 5. Offline imitation learning from heterogeneous experts results.

SMODICE is most robust to mismatched experts!

3. Offline IL from Examples

 ${\it Figure~6.~ Offline~imitation~learning~from~examples~results.}$

Conclusion

- State-matching as a framework for versatile offline IL
- SMODICE: A Regression-Based Offline IL Algorithm
- State-of-art results in all three settings without any hyperparameter tuning!

Project Website:

https://sites.google.com/view/smodice/home

Jason Yecheng Ma, Andrew Shen, Dinesh Jayaraman, Osbert Bastani University of Pennsylvania

