

Hessian-Free High-Resolution Nesterov Acceleration For Sampling

Ruilin Li¹, Hongyuan Zha², Molei Tao^{1*}

1: Georgia Institute of Technology
2: The Chinese University of Hong Kong, Shenzhen

ICML 2022

The Sampling Problem

Task: sampling from a statistical distribution:

- ▶ given: a probability density $Z^{-1}\rho(x)$, $x \in \mathbb{R}^d$

The Sampling Problem

Task: sampling from a statistical distribution:

- ▶ given: a probability density $Z^{-1}\rho(x)$, $x \in \mathbb{R}^d$
- ▶ goal: samples of r.v. with this density

The Sampling Problem

Task: sampling from a statistical distribution:

- ▶ given: a probability density $Z^{-1}\rho(x)$, $x \in \mathbb{R}^d$
- ▶ goal: samples of r.v. with this density

Relevance:

- ▶ stochastic optimization

The Sampling Problem

Task: sampling from a statistical distribution:

- ▶ given: a probability density $Z^{-1}\rho(x)$, $x \in \mathbb{R}^d$
- ▶ goal: samples of r.v. with this density

Relevance:

- ▶ stochastic optimization
- ▶ generative modeling

The Sampling Problem

Task: sampling from a statistical distribution:

- ▶ given: a probability density $Z^{-1}\rho(x)$, $x \in \mathbb{R}^d$
- ▶ goal: samples of r.v. with this density

Relevance:

- ▶ stochastic optimization
- ▶ generative modeling
- ▶ Bayesian inference

The Sampling Problem

Task: sampling from a statistical distribution:

- ▶ given: a probability density $Z^{-1}\rho(x)$, $x \in \mathbb{R}^d$
- ▶ goal: samples of r.v. with this density

Relevance:

- ▶ stochastic optimization
- ▶ generative modeling
- ▶ Bayesian inference
- ▶ optimal transport

The Sampling Problem

Task: sampling from a statistical distribution:

- ▶ given: a probability density $Z^{-1}\rho(x)$, $x \in \mathbb{R}^d$
- ▶ goal: samples of r.v. with this density

Relevance:

- ▶ stochastic optimization
- ▶ generative modeling
- ▶ Bayesian inference
- ▶ optimal transport
- ▶ ...

A First Algorithm: Langevin Monte Carlo

LMC (a.k.a. Unadjusted Langevin Algorithm)

Let $f = -\log \rho$. Use iteration

$$x_k = x_{k-1} - h \nabla f(x_{k-1}) + \sqrt{2h} \xi_k$$

with i.i.d. standard normal ξ_k . Output x_k for $k \gg 1$.

A First Algorithm: Langevin Monte Carlo

LMC (a.k.a. Unadjusted Langevin Algorithm)

Let $f = -\log \rho$. Use iteration

$$x_k = x_{k-1} - h \nabla f(x_{k-1}) + \sqrt{2h} \xi_k$$

with i.i.d. standard normal ξ_k . Output x_k for $k \gg 1$.

Relation with Optimization

A First Algorithm: Langevin Monte Carlo

LMC (a.k.a. Unadjusted Langevin Algorithm)

Let $f = -\log \rho$. Use iteration

$$x_k = x_{k-1} - h \nabla f(x_{k-1}) + \sqrt{2h} \xi_k$$

with i.i.d. standard normal ξ_k . Output x_k for $k \gg 1$.

Relation with Optimization

$$x_k = x_{k-1} - h \nabla f(x_{k-1}) + \sqrt{2h} \xi_k$$

LMC = Gradient Descent + Appropriately Added Noise

Momentum Acceleration?

- ▶ **optimization**: momentum can accelerate the convergence.

Momentum Acceleration?

- ▶ **optimization**: momentum can accelerate the convergence.
- ▶ what about **sampling**?

Momentum Acceleration?

- ▶ **optimization**: momentum can accelerate the convergence.
- ▶ what about **sampling**?

continuous dynamics as a bridge for designing accelerated sampler

Momentum Acceleration?

- ▶ **optimization**: momentum can accelerate the convergence.
- ▶ what about **sampling**?

continuous dynamics as a bridge for designing accelerated sampler
infinitesimal learning rate limit

GD with momentum converges to, as $h \rightarrow 0$, an ODE

$$\begin{cases} \dot{q} = p \\ \dot{p} = -\gamma p - \nabla f(q) \end{cases}, \quad \lim_{t \rightarrow \infty} q(t) = \text{local min of } f$$

Momentum Acceleration?

- ▶ **optimization**: momentum can accelerate the convergence.
- ▶ what about **sampling**?

continuous dynamics as a bridge for designing accelerated sampler
infinitesimal learning rate limit

GD with momentum converges to, as $h \rightarrow 0$, an ODE

$$\begin{cases} \dot{q} = p \\ \dot{p} = -\gamma p - \nabla f(q) \end{cases}, \quad \lim_{t \rightarrow \infty} q(t) = \text{local min of } f$$

add noise appropriately:

$$\begin{cases} dq = \textcolor{blue}{p} dt \\ dp = (-\gamma p - \nabla f(q))dt + \sqrt{2\gamma}dW_t \end{cases}$$

Momentum Acceleration?

- ▶ **optimization**: momentum can accelerate the convergence.
- ▶ what about **sampling**?

continuous dynamics as a bridge for designing accelerated sampler
infinitesimal learning rate limit

GD with momentum converges to, as $h \rightarrow 0$, an ODE

$$\begin{cases} \dot{q} = p \\ \dot{p} = -\gamma p - \nabla f(q) \end{cases}, \quad \lim_{t \rightarrow \infty} q(t) = \text{local min of } f$$

add noise appropriately:

$$\begin{cases} dq = p dt \\ dp = (-\gamma p - \nabla f(q))dt + \sqrt{2\gamma}dW_t \end{cases}$$

$q(t) \rightarrow Z^{-1} \exp(-f(q))dq$ under reasonable conditions

Momentum Acceleration?

- ▶ **optimization**: momentum can accelerate the convergence.
- ▶ what about **sampling**?

continuous dynamics as a bridge for designing accelerated sampler
infinitesimal learning rate limit

GD with momentum converges to, as $h \rightarrow 0$, an ODE

$$\begin{cases} \dot{q} = p \\ \dot{p} = -\gamma p - \nabla f(q) \end{cases}, \quad \lim_{t \rightarrow \infty} q(t) = \text{local min of } f$$

add noise appropriately:

$$\begin{cases} dq = p dt \\ dp = (-\gamma p - \nabla f(q))dt + \sqrt{2\gamma}dW_t \end{cases}$$

$q(t) \rightarrow Z^{-1} \exp(-f(q))dq$ under reasonable conditions

discretize: KLMC [Dalalyan & Riou-Durand 20], RMA [Shen & Lee 19], ...

Finite h However Has Positive Effect

Reality: h is not infinitesimal.

Finite h However Has Positive Effect

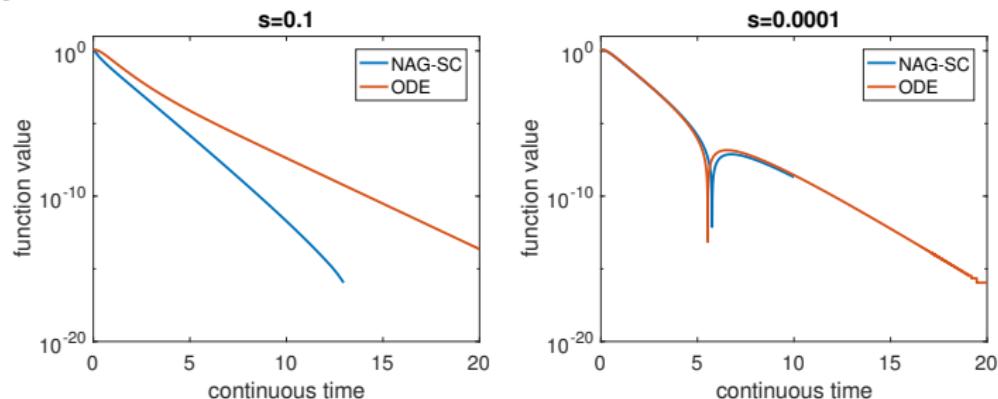
Reality: h is not infinitesimal.

Optimization: [Shi, Du, Jordan & Su 21]: GD with momentum (e.g., NAG-SC) is *faster* than its ODE limit when learning rate is $\rightarrow 0$.

Finite h However Has Positive Effect

Reality: h is not infinitesimal.

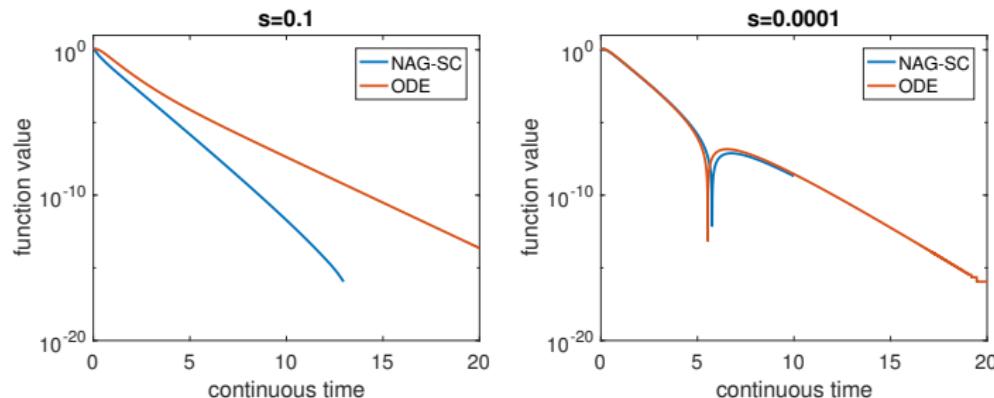
Optimization: [Shi, Du, Jordan & Su 21]: GD with momentum (e.g., NAG-SC) is *faster* than its ODE limit when learning rate is $\rightarrow 0$.



Finite h However Has Positive Effect

Reality: h is not infinitesimal.

Optimization: [Shi, Du, Jordan & Su 21]: GD with momentum (e.g., NAG-SC) is *faster* than its ODE limit when learning rate is $\rightarrow 0$.



Goal: exploit this finite h effect to further accelerate **Sampling**.

The Strategy

Turn NAG-SC **optimizer** with $\gg 0$ LR into a **sampler**:

The Strategy

Turn NAG-SC **optimizer** with $\gg 0$ LR into a **sampler**:

- ▶ View NAG-SC as a discretization of a high-resolution ODE.

The Strategy

Turn NAG-SC **optimizer** with $\gg 0$ LR into a **sampler**:

- ▶ View NAG-SC as a discretization of a high-resolution ODE.

NAG-SC:
$$\begin{cases} x_{k+1} &= y_k - s \nabla f(y_k) \\ y_{k+1} &= x_{k+1} + c(x_{k+1} - x_k) \end{cases}$$

The Strategy

Turn NAG-SC **optimizer** with $\gg 0$ LR into a **sampler**:

- ▶ View NAG-SC as a discretization of a high-resolution ODE.

NAG-SC:
$$\begin{cases} x_{k+1} = y_k - s \nabla f(y_k) \\ y_{k+1} = x_{k+1} + c(x_{k+1} - x_k) \end{cases}$$

$$q_k = y_k, p_k = (y_k - x_k)/h, h = \sqrt{cs}, \gamma = \frac{1-c}{h}, \alpha = \frac{s}{h} \implies$$

equivalent:
$$\begin{cases} p_{k+1} = p_k - h\gamma p_k - h\nabla f(q_k) \\ q_{k+1} = q_k + hp_{k+1} - h\alpha \nabla f(q_k) \end{cases}$$

The Strategy

Turn NAG-SC **optimizer** with $\gg 0$ LR into a **sampler**:

- ▶ View NAG-SC as a discretization of a high-resolution ODE.

NAG-SC:
$$\begin{cases} x_{k+1} = y_k - s \nabla f(y_k) \\ y_{k+1} = x_{k+1} + c(x_{k+1} - x_k) \end{cases}$$

$$q_k = y_k, p_k = (y_k - x_k)/h, h = \sqrt{cs}, \gamma = \frac{1-c}{h}, \alpha = \frac{s}{h} \implies$$

equivalent:
$$\begin{cases} p_{k+1} = p_k - h\gamma p_k - h\nabla f(q_k) \\ q_{k+1} = q_k + hp_{k+1} - h\alpha \nabla f(q_k) \end{cases}$$

It is a discretization of
$$\begin{cases} \dot{q} = p - \alpha \nabla f(q) \\ \dot{p} = -\gamma p - \nabla f(q) \end{cases}$$

The Strategy

Turn NAG-SC **optimizer** with $\gg 0$ LR into a **sampler**:

- ▶ View NAG-SC as a discretization of a high-resolution ODE.

NAG-SC:
$$\begin{cases} x_{k+1} = y_k - s \nabla f(y_k) \\ y_{k+1} = x_{k+1} + c(x_{k+1} - x_k) \end{cases}$$

$$q_k = y_k, p_k = (y_k - x_k)/h, h = \sqrt{cs}, \gamma = \frac{1-c}{h}, \alpha = \frac{s}{h} \implies$$

equivalent:
$$\begin{cases} p_{k+1} = p_k - h\gamma p_k - h\nabla f(q_k) \\ q_{k+1} = q_k + hp_{k+1} - h\alpha \nabla f(q_k) \end{cases}$$

It is a discretization of
$$\begin{cases} \dot{q} = p - \alpha \nabla f(q) \\ \dot{p} = -\gamma p - \nabla f(q) \end{cases}$$

Note: unlike [Shi et al. 21], no Hess f needed.

The Strategy

Turn NAG-SC **optimizer** with $\gg 0$ LR into a **sampler**:

- ▶ View NAG-SC as a discretization of a high-resolution ODE

$$\begin{cases} \dot{q} = p - \alpha \nabla f(q) \\ \dot{p} = -\gamma p - \nabla f(q) \end{cases}$$

The Strategy

Turn NAG-SC **optimizer** with $\gg 0$ LR into a **sampler**:

- ▶ View NAG-SC as a discretization of a high-resolution ODE

$$\begin{cases} \dot{q} = p - \alpha \nabla f(q) \\ \dot{p} = -\gamma p - \nabla f(q) \end{cases}$$

- ▶ View α as a hyperparameter, no longer dependent on LR.

The Strategy

Turn NAG-SC **optimizer** with $\gg 0$ LR into a **sampler**:

- ▶ View NAG-SC as a discretization of a high-resolution ODE

$$\begin{cases} \dot{q} = p - \alpha \nabla f(q) \\ \dot{p} = -\gamma p - \nabla f(q) \end{cases}$$

- ▶ View α as a hyperparameter, no longer dependent on LR.
- ▶ Add noise appropriately:

$$\begin{cases} dq = (p - \alpha \nabla f(q))dt + \sqrt{2\alpha} dW_t \\ dp = (-\gamma p - \nabla f(q))dt + \sqrt{2\gamma} dB_t \end{cases}$$

s.t. $q(\infty) \sim Z^{-1} \exp(-f(q))dq$.

The Strategy

Turn NAG-SC **optimizer** with $\gg 0$ LR into a **sampler**:

- ▶ View NAG-SC as a discretization of a high-resolution ODE

$$\begin{cases} \dot{q} = p - \alpha \nabla f(q) \\ \dot{p} = -\gamma p - \nabla f(q) \end{cases}$$

- ▶ View α as a hyperparameter, no longer dependent on LR.
- ▶ Add noise appropriately:

$$\begin{cases} dq = (p - \alpha \nabla f(q))dt + \sqrt{2\alpha} dW_t \\ dp = (-\gamma p - \nabla f(q))dt + \sqrt{2\gamma} dB_t \end{cases}$$

s.t. $q(\infty) \sim Z^{-1} \exp(-f(q))dq$.

- ▶ Discretize time. 1st-order and RMA versions in the paper.

Results

- ▶ Non-asymptotic error bound \Rightarrow theoretically guaranteed advantage

Results

- ▶ Non-asymptotic error bound \Rightarrow theoretically guaranteed advantage
- ▶ Choice of α : theory and experiments

Results

- ▶ Non-asymptotic error bound \Rightarrow theoretically guaranteed advantage
- ▶ Choice of α : theory and experiments
- ▶ Experiments: strongly convex, convex, and nonconvex f 's.

Results

- ▶ Non-asymptotic error bound \Rightarrow theoretically guaranteed advantage
- ▶ Choice of α : theory and experiments
- ▶ Experiments: strongly convex, convex, and nonconvex f 's.

Bayesian Neural Network Example

