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The Sampling Problem

Task: sampling from a statistical distribution:

▶ given: a probability density Z−1ρ(x), x ∈ Rd

▶ goal: samples of r.v. with this density

Relevance:

▶ stochastic optimization

▶ generative modeling

▶ Bayesian inference

▶ optimal transport
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A First Algorithm: Langevin Monte Carlo

LMC (a.k.a. Unadjusted Langevin Algorithm)

Let f = − log ρ. Use iteration

xk = xk−1 − h∇f (xk−1) +
√
2hξk

with i.i.d. standard normal ξk . Output xk for k ≫ 1.

Relation with Optimization

xk = xk−1 − h∇f (xk−1) +
√
2hξk

LMC = Gradient Descent + Appropriately Added Noise
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Momentum Acceleration?

▶ optimization: momentum can accelerate the convergence.

▶ what about sampling?

continuous dynamics as a bridge for designing accelerated sampler

infinitesimal learning rate limit

GD with momentum converges to, as h → 0, an ODE{
q̇ = p

ṗ = −γp −∇f (q)
, lim

t→∞
q(t) = local min of f

add noise appropriately:{
dq = pdt

dp = (−γp −∇f (q))dt +
√
2γdWt

q(t) → Z−1 exp(−f (q))dq under reasonable conditions

discretize: KLMC [Dalalyan & Riou-Durand 20], RMA [Shen & Lee 19], · · ·
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Finite h However Has Positive Effect

Reality: h is not infinitesimal.

Optimization: [Shi, Du, Jordan & Su 21]: GD with momentum
(e.g., NAG-SC) is faster than its ODE limit when learning rate is
↛ 0.
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Goal: exploit this finite h effect to further accelerate Sampling.
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The Strategy

Turn NAG-SC optimizer with ≫ 0 LR into a sampler:

▶ View NAG-SC as a discretization of a high-resolution ODE.

NAG-SC:

{
xk+1 = yk − s∇f (yk)

yk+1 = xk+1 + c(xk+1 − xk)

qk = yk , pk = (yk − xk)/h, h =
√
cs, γ = 1−c

h , α = s
h =⇒

equivalent:

{
pk+1 = pk − hγpk − h∇f (qk)

qk+1 = qk + hpk+1 − hα∇f (qk)

It is a discretization of

{
q̇ = p−α∇f (q)

ṗ = −γp −∇f (q)

Note: unlike [Shi et al. 21], no Hess f needed.
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The Strategy

Turn NAG-SC optimizer with ≫ 0 LR into a sampler:

▶ View NAG-SC as a discretization of a high-resolution ODE{
q̇ = p−α∇f (q)

ṗ = −γp −∇f (q)

▶ View α as a hyperparameter, no longer dependent on LR.

▶ Add noise appropriately:{
dq = (p−α∇f (q))dt +

√
2αdWt

dp = (−γp −∇f (q))dt +
√
2γdBt

s.t. q(∞) ∼ Z−1 exp(−f (q))dq.

▶ Discretize time. 1st-order and RMA versions in the paper.
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ṗ = −γp −∇f (q)

▶ View α as a hyperparameter, no longer dependent on LR.

▶ Add noise appropriately:{
dq = (p−α∇f (q))dt +

√
2αdWt

dp = (−γp −∇f (q))dt +
√
2γdBt

s.t. q(∞) ∼ Z−1 exp(−f (q))dq.

▶ Discretize time. 1st-order and RMA versions in the paper.



The Strategy

Turn NAG-SC optimizer with ≫ 0 LR into a sampler:

▶ View NAG-SC as a discretization of a high-resolution ODE{
q̇ = p−α∇f (q)
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Results

▶ Non-asymptotic error bound ⇒ theoretically guaranteed
advantage

▶ Choice of α: theory and experiments

▶ Experiments: strongly convex, convex, and nonconvex f ’s.
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