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The Sampling Problem

Task: sampling from a statistical distribution:
> given: a probability density Z~!p(x), x € R?

> goal: samples of r.v. with this density

Relevance:

P stochastic optimization
generative modeling
Bayesian inference

>
>
> optimal transport
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A First Algorithm: Langevin Monte Carlo

LMC (a.k.a. Unadjusted Langevin Algorithm)
Let f = —log p. Use iteration

X — Xk—1 — th(kal) + \/ﬂgk

with i.i.d. standard normal &,. Output x, for k > 1.

Relation with Optimization

Xk = Xk 1fhvf(Xk 1) +\/2h€k
LMC = Gradient Descent  + Appropriately Added Noise



Momentum Acceleration?

> optimization: momentum can accelerate the convergence.



Momentum Acceleration?

> optimization: momentum can accelerate the convergence.

» what about sampling?



Momentum Acceleration?

> optimization: momentum can accelerate the convergence.
» what about sampling?

continuous dynamics as a bridge for designing accelerated sampler



Momentum Acceleration?

> optimization: momentum can accelerate the convergence.
» what about sampling?

continuous dynamics as a bridge for designing accelerated sampler

infinitesimal learning rate limit
GD with momentum converges to, as h — 0, an ODE

c.y —P ; lim g(t) = local min of f
p =—p—Vf(g) o



Momentum Acceleration?

> optimization: momentum can accelerate the convergence.
» what about sampling?

continuous dynamics as a bridge for designing accelerated sampler

infinitesimal learning rate limit
GD with momentum converges to, as h — 0, an ODE

c.y —P ; lim g(t) = local min of f
p =—p—Vf(g) o

add noise appropriately:

dqg = pdt
dp = dt + /2vdW;



Momentum Acceleration?

> optimization: momentum can accelerate the convergence.
» what about sampling?

continuous dynamics as a bridge for designing accelerated sampler

infinitesimal learning rate limit
GD with momentum converges to, as h — 0, an ODE

c.y -7 ) lim g(t) = local min of f
p =—p-Vi(g) — o
add noise appropriately:

dqg = pdt
dp = dt + /2vdW;

q(t) = Z Yexp(—f(q))dg under reasonable conditions



Momentum Acceleration?

> optimization: momentum can accelerate the convergence.
» what about sampling?

continuous dynamics as a bridge for designing accelerated sampler

infinitesimal learning rate limit
GD with momentum converges to, as h — 0, an ODE

c.y —P ; lim g(t) = local min of f
p =—p—Vf(g) o

add noise appropriately:

dqg = pdt
dp = dt + /2vdW;

q(t) = Z Yexp(—f(q))dg under reasonable conditions

discretize: KLMC [Dalalyan & Riou-Durand 20], RMA [Shen & Lee 19], - - -
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Finite h However Has Positive Effect

Reality: h is not infinitesimal.

Optimization: [Shi, Du, Jordan & Su 21]: GD with momentum
(e.g., NAG-SC) is faster than its ODE limit when learning rate is

- 0.
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Goal: exploit this finite h effect to further accelerate Sampling.
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The Strategy

Turn NAG-SC optimizer with > 0 LR into a sampler:
> View NAG-SC as a discretization of a high-resolution ODE.

NAG.SC: Xer1 =Yk —SVF(yk)
Yir1 = X1 + (X1 — xk)

Ak = Vi Pk = (v — xk)/h,h = \/cs,y =125 a = 3 =

>l

. _ Pk+1 = Pk — hypk — hV£(qx)
equivalent:
Gk+1 = Gk + hpis1 — haVf(qk)

g=p—aVf(q)
p=—vp—Vf(q)

Note: unlike [Shi et al. 21], no Hess f needed.

It is a discretization of {
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The Strategy

Turn NAG-SC optimizer with > 0 LR into a sampler:
» View NAG-SC as a discretization of a high-resolution ODE

{d =p—aVf(q)
p=—vp—Vf(q)

> View « as a hyperparameter, no longer dependent on LR.
» Add noise appropriately:

{dq = (p— aVf(q))dt+ vV2adW,;
dp = (—vp— Vf(q))dt + /2vdB;

s.t. q(oco0) ~ Z texp(—f(q))dq.
» Discretize time. 1st-order and RMA versions in the paper.
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Bayesian Neural Network Example
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