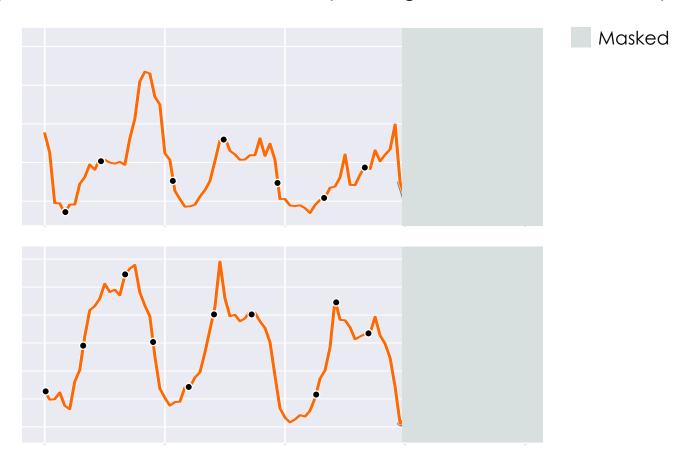
servicenow.

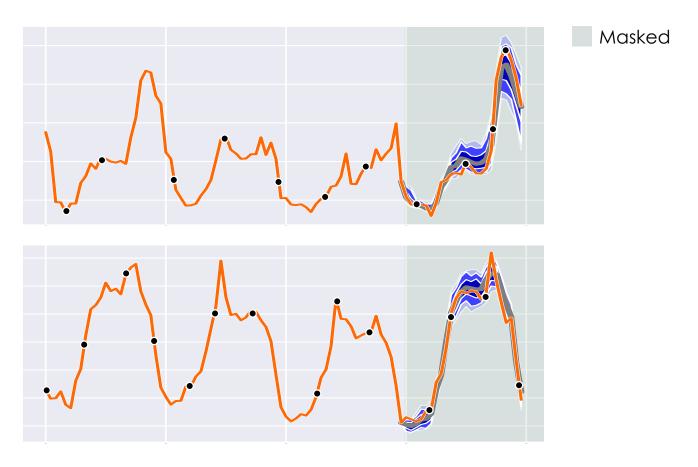
TACTIS

Transformer-Attentional Copula for Time Series

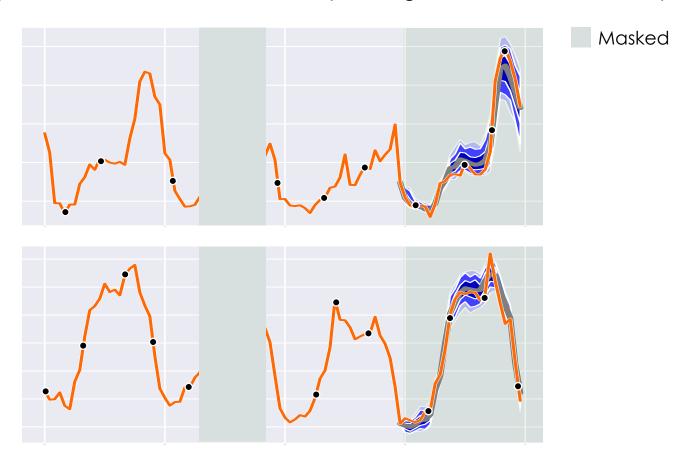
Goal: Infer the joint distribution of masked time points, given the observed time points



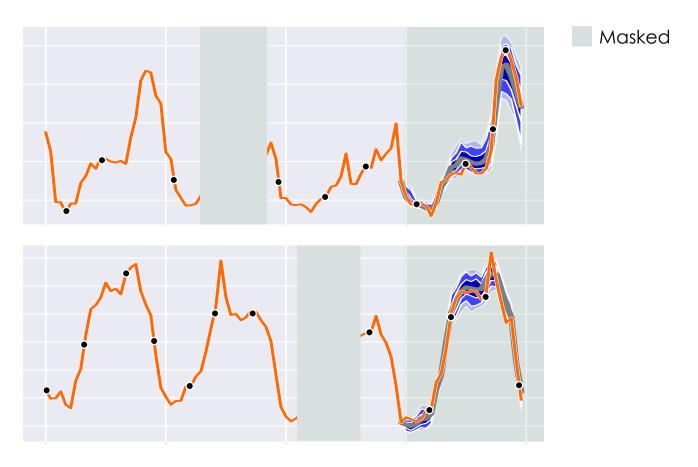
Goal: Infer the joint distribution of masked time points, given the observed time points



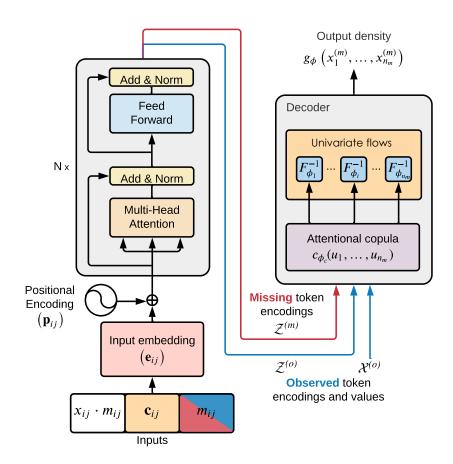
Goal: Infer the joint distribution of masked time points, given the observed time points



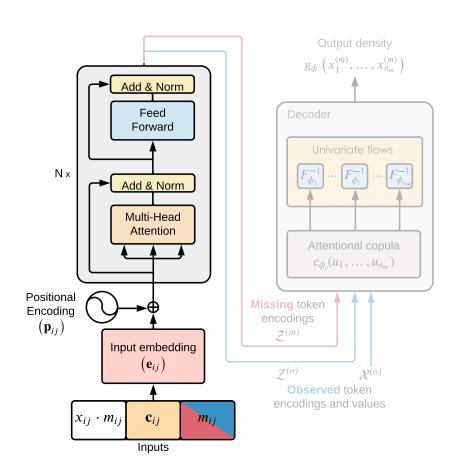
Goal: Infer the joint distribution of masked time points, given the observed time points



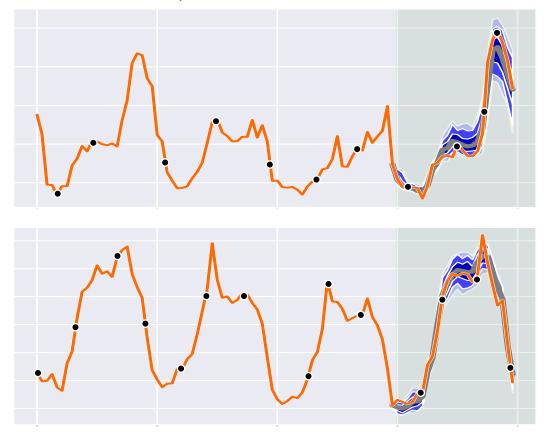
TACTIS is an encoder-decoder model, similar to standard transformers.



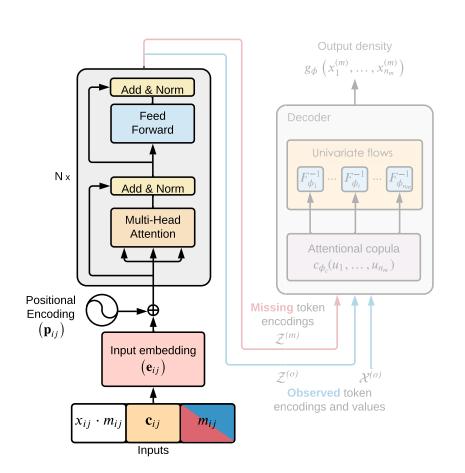
TACTIS is an encoder-decoder model, similar to standard transformers.



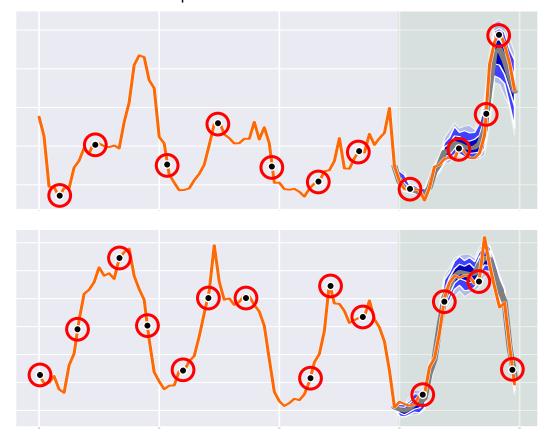
Encoder: each point in each time series is a token



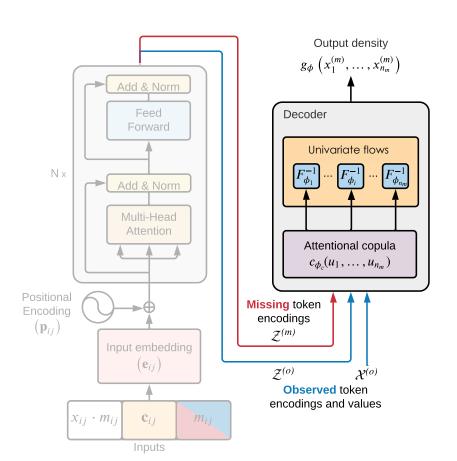
TACTIS is an encoder-decoder model, similar to standard transformers.



Encoder: each point in each time series is a token



TACTIS is an encoder-decoder model, similar to standard transformers.



Decoder: a copula-based autoregressive decoder

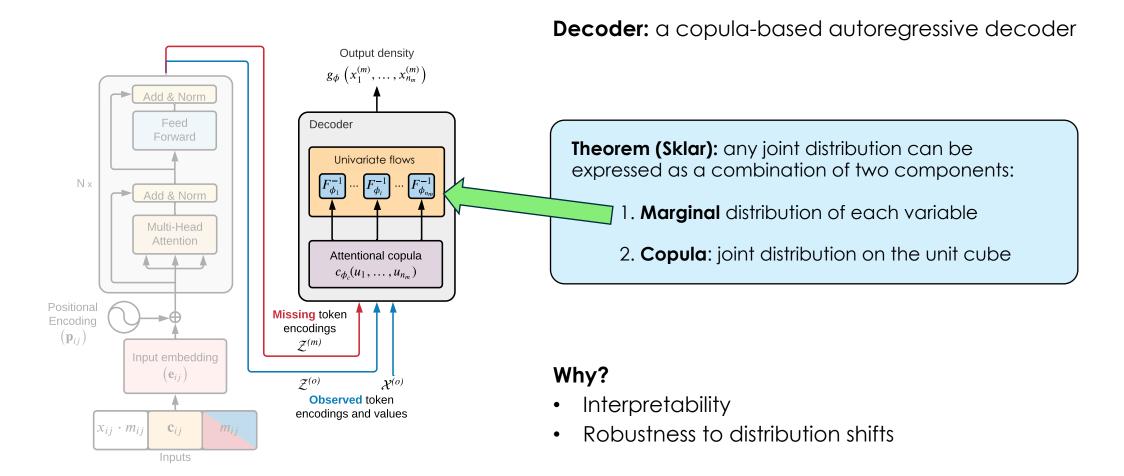
Theorem (Sklar): any joint distribution can be expressed as a combination of two components:

- 1. Marginal distribution of each variable
- 2. Copula: joint distribution on the unit cube

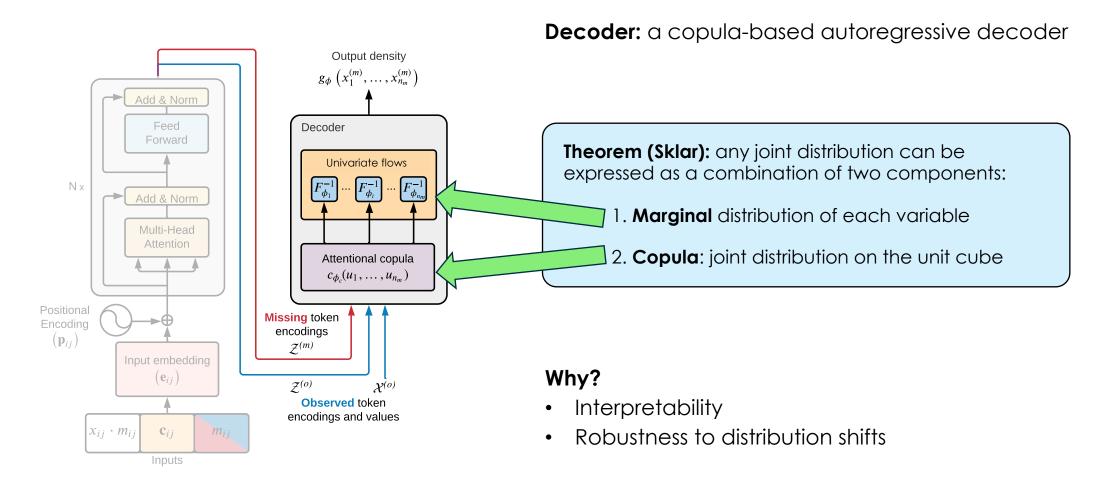
Why?

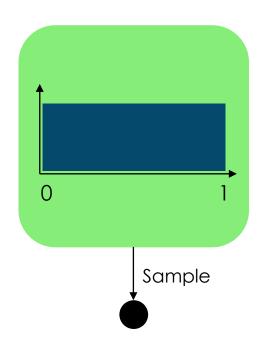
- Interpretability
- Robustness to distribution shifts

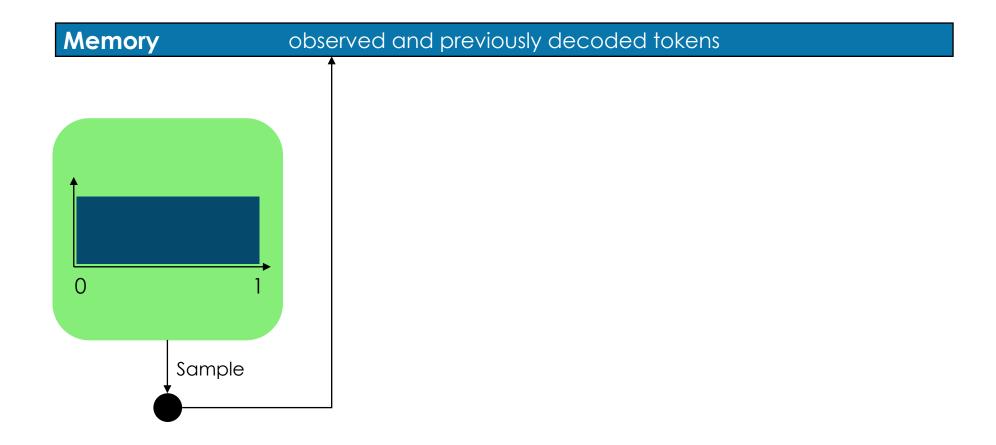
TACTIS is an encoder-decoder model, similar to standard transformers.

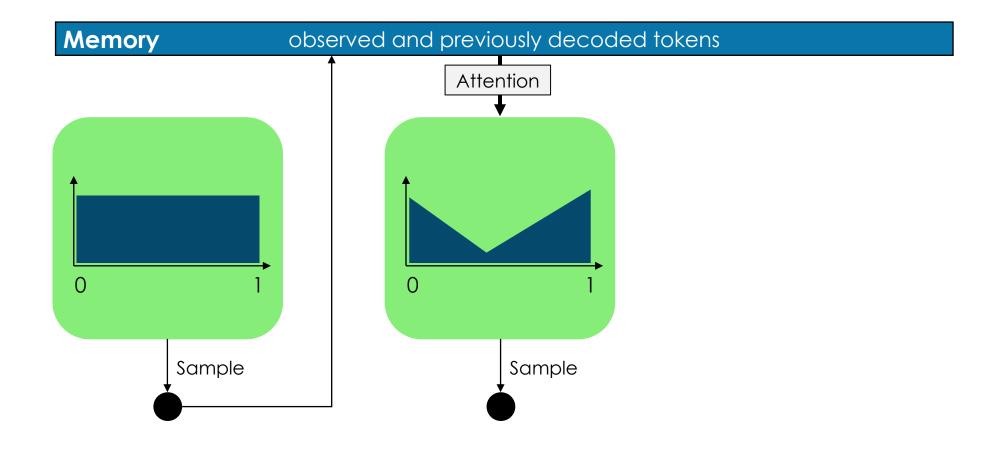


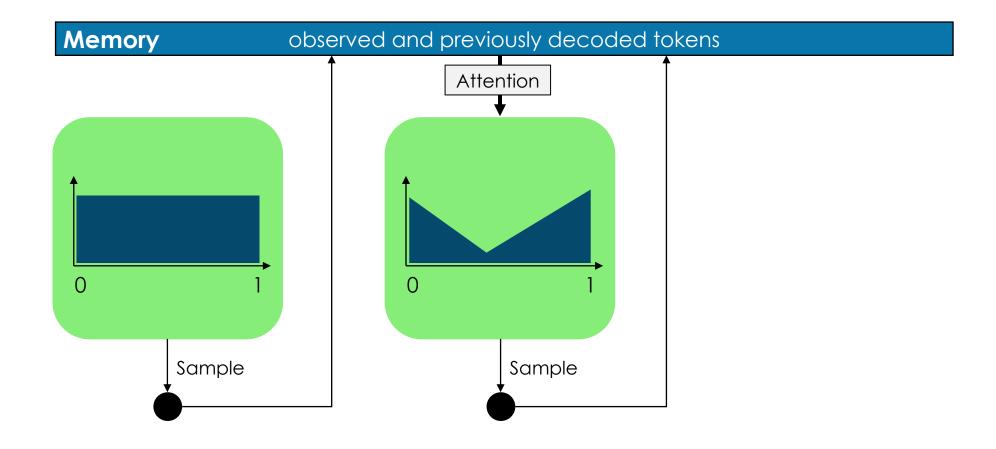
TACTIS is an encoder-decoder model, similar to standard transformers.

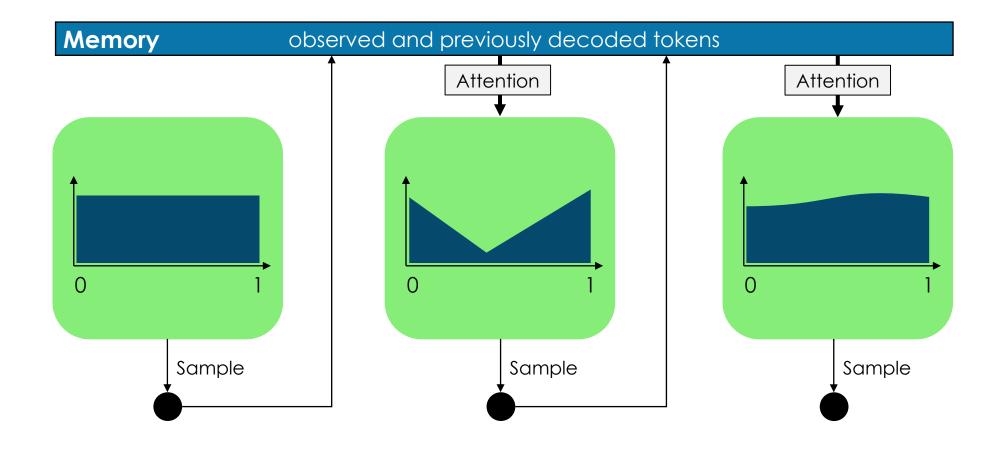


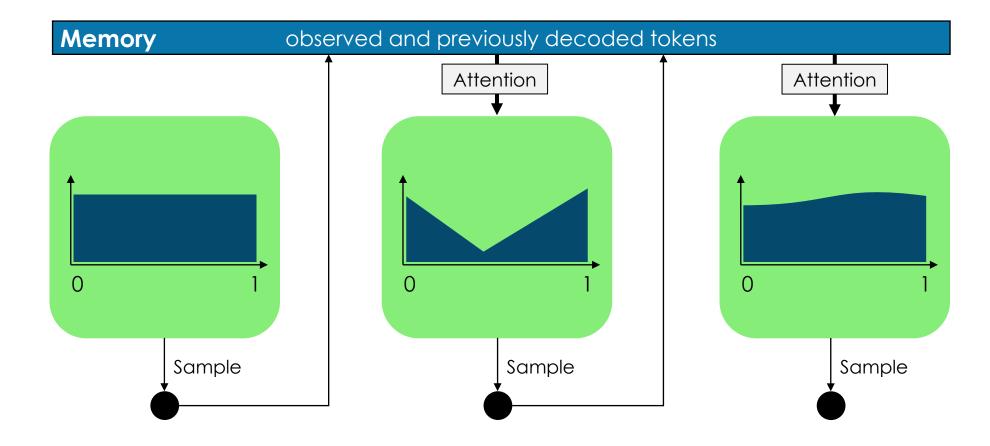












Theorem: decoding in a random order guarantees convergence to valid copulas

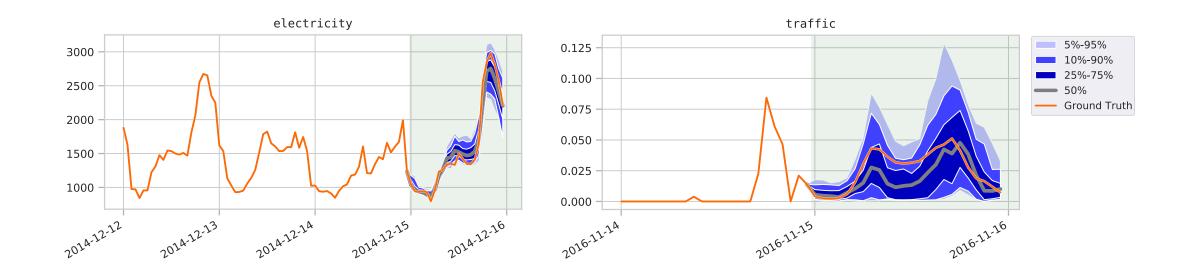
State-of-the-art forecasting performance

CRPS-Sum means (± standard errors). Lower is better. Best results in bold.

Model	electricity	fred-md	kdd-cup	solar-10min	traffic	Avg. Rank
Auto-ARIMA	0.077 ± 0.016	0.043 ± 0.005	0.625 ± 0.066	0.994 ± 0.216	0.222 ± 0.005	4.7 ± 0.3
ETS	0.059 ± 0.011	$\boldsymbol{0.037 \pm 0.010}$	0.408 ± 0.030	0.678 ± 0.097	0.353 ± 0.011	4.4 ± 0.3
TempFlow	0.075 ± 0.024	0.095 ± 0.004	0.250 ± 0.010	0.507 ± 0.034	0.242 ± 0.020	3.9 ± 0.2
TimeGrad	0.067 ± 0.028	0.094 ± 0.030	0.326 ± 0.024	0.540 ± 0.044	0.126 ± 0.019	3.6 ± 0.3
GPVar	0.035 ± 0.011	0.067 ± 0.008	0.290 ± 0.005	0.254 ± 0.028	0.145 ± 0.010	2.7 ± 0.2
TACTiS-TT	0.021 ± 0.005	0.042 ± 0.009	$\boldsymbol{0.237 \pm 0.013}$	0.311 ± 0.061	0.071 ± 0.008	$\textbf{1.6} \pm \textbf{0.2}$

TACTIS outperforms state-of-the-art models on real-world datasets with hundreds of time series

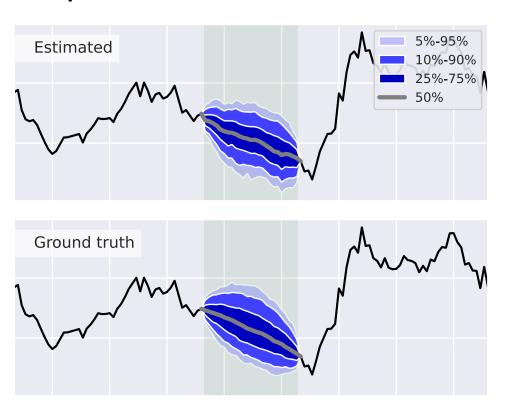
State-of-the-art forecasting performance



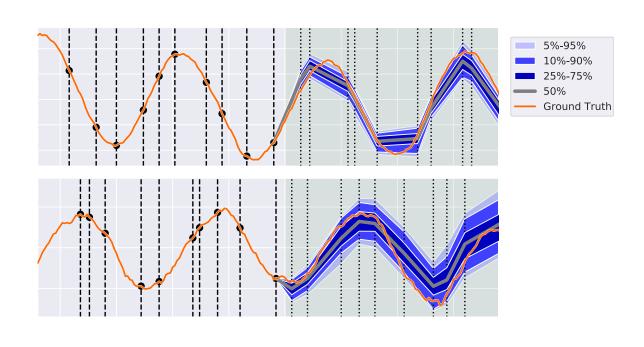
TACTIS outperforms state-of-the-art models on real-world datasets with hundreds of time series

TACTiS is very flexible

Interpolation



Unaligned and non-uniformly sampled data



Thank you!

Please come by our poster!

Code: https://github.com/ServiceNow/TACTiS

