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Personalized Federated Learning

min
w ,θ1:N

{
f (w , θ1:N) := 1

N

N∑
i=1

Eξ∼Pi [fi (w , θi , ξ)]
}
,

N: number of users/clients
Pi : data distribution of user i
w : global (shared) parameters
θi : local parameters for user i

Federated Learning
Decentralized data → federated optimization algorithms (Wang et al., 2021)
Privacy leaks on w → user-level (joint) differential privacy (Kearns et al., 2014)
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Local vs Global Learning

Local learning

min
θi

E(x ,y)∼Pi [`(y , θi
>x)]

Personalized models
Perfectly private!
Statistically inefficient

Global learning

min
w

1
N

N∑
i=1

E(x ,y)∼Pi [`(y ,w
>x)]

No personalization
Cost of privacy
Statistical gains (N times more samples)

Q: How does personalization affect this tradeoff?
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Main Algorithm

Federated SGD on personalized models
Vary personalization level through step-size ratio α
DP updates on w through clipping + noise injection

Algorithm: (n: rounds = samples per user)
For t = 1, . . . , n

I For all clients i in parallel
F Sample data ξi,t ∼ Pi
F Compute g t

θ,i = ∇θfi (wt−1, θi,t−1, ξi,t)
g t

w,i = ∇w fi (wt−1, θi,t−1, ξi,t)
F Update θi,t = θi,t−1 − η

N g t
θ,i (local update)

I Sample ζt ∼ N (0, σ2ζ I)
I Update wt = wt−1 − αη( 1

N
∑N

i=1 clip(g t
w ,i ) + ζt) (global update)
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Generalization guarantee

Define α-norm of z = (w , θ1:N) which controls inductive bias:

‖z‖2α := 1
α
‖w‖2 + ‖θ1:N‖2

fi jointly convex, L-smooth in (w , θi ), G-bounded gradients, gradient variances σ2w , σ2θ
Set privacy noise ζt such that the algorithm satisfies (ε, δ) (joint) DP

Theorem (Generalization)
Let z∗ be a minimizer of f , and z̄n = 1

n
∑n

t=1 zt . After n rounds/samples, we have

E[f (z̄n)− f (z∗)] .
L max(α, 1

N )‖z∗‖2α
n︸ ︷︷ ︸

bias

+ ‖z∗‖α

√
ασ2w + σ2θ

Nn︸ ︷︷ ︸
variance

+ ‖z∗‖α

√
αdw G2 log(1δ )

N2ε2︸ ︷︷ ︸
privacy cost
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Example: additive model

min
w ,θ1:N

1
N

N∑
i=1

E(x ,y)∼Pi [`(y , (w + θi )>x)]

Assume global-only minimizer v∗ exists: v∗ ∈ arg minv E(x ,y)∼Pi [`(y , v>x)]

Local learning guarantee (α→ 0), z∗ = (0, (v∗, . . . , v∗)): (ignoring the bias term)

E[f (z̄n)− f (z∗)] . ‖v∗‖

√
σ2θ
n

Global learning guarantee (α→∞), z∗ = (v∗, 0):

E[f (z̄n)− f (z∗)] . ‖v∗‖

√
σ2w
Nn + ‖v∗‖

√
dw G2 log(1δ )

N2ε2

Decreasing α helps when n gets larger, or when more personalization is useful
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Experiments
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Thank you!
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