Describing Differences between Text Distributions with Natural Language

Ruiqi Zhong, Charlie Snell, Dan Klein, Jacob Steinhardt

Difference between Distributions

1

 D_2

- Ma mère m'a emmené à l'hôpital.
- J'ai 10 \$. Je dépense 3 \$ sur un livre.
- Le gouvernement n'a pas réussi à localiser les suspects.

- My mom and I were best friends.
- Lucy and Peter co-authored a paper.
- I called her to explain why I did badly on the test.

Difference between Distributions

 D_1

 D_2

- Ma mère m'a emmené à l'hôpital.
- J'ai 10 \$. Je dépense 3 \$ sur un livre.
- Le gouvernement n'a pas réussi à localiser les suspects.

- My mom and I were best friends.
- Lucy and Peter co-authored a paper.
- I called her to explain why I did badly on the test.

 $s = D_1$ contains more French sentences compared to D_2 "

Tell the Difference!

 D_1

 D_2

- Pieck rescued Gabi from the dungeon and transformed into a Titan afterwards.
- All four of my maternal and fraternal grandparents are professors, and that's why I'm determined to become a prof as well.
- My mom took me to the hospital, and the nurse said that she has never seen this symptom before.
- I was really fortunate to be advised Prof. McKeown and Prof. Hirschberg at Columbia on NLP research, and Prof. Andoni on Theoretical computer science.
- Historia was born as the illegitimate and unrecognized daughter of Rod Reiss. Her mother, Alma, was a servant in his household.
- I called her to explain what happened to her aunt.
- It's quite ironical that such a centralized government fail to locate the suspects who gravely injured those girls earlier this month.

- She carried a total of eight torpedoes. Her deck was reinforced to enable her to lay a minefield.
- My mom and I were best friends and we used to hunt together.
- Lucy and Peter co-authored a paper on machine learning but got a really bad review.
- I called her to explain why I did really badly on the test.
- Adding to Historia's isolation, the other children outside the estate would throw rocks at her, and she was not allowed to leave.
- Bentham defined as the "fundamental axiom" of his philosophy the principle that "it is the greatest happiness of the greatest number that is the measure of right and wrong."
- Large language models advanced the state of the art by quite a lot but there are still rooms for improvements.
- After 10 years of lockdown due to the pandemics, I finally saw my grandfather I thought I might never see him again.

The <u>test distribution</u> <u>involves more formal writing</u> than the <u>training distribution</u>.

 D_1

S

 D_2

The test distribution involves more formal writing than the training distribution.

 D_1 S D_2

A <u>text cluster</u> <u>contains more sports-related articles</u> than <u>other clusters</u>.

 D_1 S D_2

The <u>test distribution</u> <u>involves more formal writing</u> than the <u>training distribution</u>.

 D_1 s

A <u>text cluster</u> <u>contains more sports-related articles</u> than <u>other clusters</u>.

 D_1 S D_2

Public opinions from this year are more optimistic about the pandemic than last year.

 D_1 S D_2

 D_2

What is a Good Description?

A good description helps humans tell D_1 and D_2 and apart.

s = "Samples from D_1 are more positive than those from D_2 "

s = "Samples from D_1 are more positive than those from D_2 "

```
x_a \sim D_a "This paper proposes an impactful task ..."
```

 $x_b \sim D_b$ "The approach of this paper is too trivial."

s = "Samples from D_1 are more positive than those from D_2 "

$$x_a \sim D_a$$
 "This paper proposes an impactful task ..."
$$x_b \sim D_b$$
 "The approach of this paper is too trivial." Human Classifies

s = "Samples from D_1 are more positive than those from D_2 "

 $x_a \sim D_a$ "This paper proposes an impactful task ..."

 $x_b \sim D_b$ "The approach of this paper is too trivial."

Human Classifies I think x_a is from D_1 and x_b is from D_2

s = "Samples from D_1 are more positive than those from D_2 "

Loss(s): Repeat 100 times and calculate human classification error rate.

s = "Samples from D_1 are more positive than those from D_2 "

Loss(s): Repeat 100 times and calculate human classification error rate.

~\$10 each single description.

Search for the best description that helps humans tell D_1 and D_2 apart.

- Search for the best description that helps humans tell D_1 and D_2 apart.
- Naive implementation:

- Search for the best description that helps humans tell D_1 and D_2 apart.
- Naive implementation:
 - Enumerate all natural language strings.

- Search for the best description that helps humans tell D_1 and D_2 apart.
- Naive implementation:
 - Enumerate all natural language strings.
 - For each string, verify its quality by asking humans to use it to classify on 100 sample pairs.

- Search for the best description that helps humans tell D_1 and D_2 apart.
- Naive Practical implementation:
 - Enumerate all natural language strings.
 Fine-tune GPT-3 to propose promising candidate descriptions.
 - For each string, verify its quality by asking humans to use it to classify on 100 sample pairs.
 - Fine-tune model to simulate human classification.

Machine learning models might pick up shallow undesirable correlations.

- Machine learning models might pick up shallow undesirable correlations.
- Binary classification: Spam vs. Non-Spam

 D_1 D_2

- Machine learning models might pick up shallow undesirable correlations.
- Binary classification: Spam vs. Non-Spam D₁
 D₂
- ► "D₁ contains more spam" / "D₁ contains more hyperlinks"

- Machine learning models might pick up shallow undesirable correlations.
- Binary classification: Spam vs. Non-Spam D₁
 D₂
- "D₁ contains more spam" / "D₁ contains more hyperlinks"
- RoBERTa fine-tuned on this dataset classifies a message as spam whenever it sees a hyperlink!!!

A benchmark with 54 real-world distribution pairs with known differences.

- A benchmark with 54 real-world distribution pairs with known differences.
- An automatic data generation method to fine-tune GPT-3.

- A benchmark with 54 real-world distribution pairs with known differences.
- An automatic data generation method to fine-tune GPT-3.
 - GPT-3 0-shot: 7%.
 - Fine-tuned GPT-3 with re-ranking: 61%.
- Applications:
 - Summarize unknown tasks.
 - Describe distribution shifts.
 - Expose dataset flaws.
 - Label text clusters.

- A benchmark with 54 real-world distribution pairs with known differences.
- An automatic data generation method to fine-tune GPT-3.
 - GPT-3 0-shot: 7%.
 - Fine-tuned GPT-3 with re-ranking: 61%.
- Applications:
 - Summarize unknown tasks.
 - Describe distribution shifts.
 - Expose dataset flaws.
 - Label text clusters.

Our system finds dataset properties we were unaware of before!!

Thanks!