AdaCore: **Ada**ptive Second Order **Core**sets for

Data-efficient Machine Learning

Omead Pooladzandi, David Davini, Baharan Mirzasoleiman

Problem Statement

- Training on full dataset can be prohibitively expensive
 - GPT-3 cost \$12 Million
 - High Carbon Footprint
- Choose the most salient subset of samples S from full dataset V

M'20

If we can find S^* we can speedup training by $|V|/|S^*|$ + coreset time by only training on S^*

Minimizing Empirical Risk

• Training samples: $\{(x_i, y_i), i \in V\}$

$$w_* \in \operatorname{arg\,min}_{w \in \mathcal{W}} \mathcal{L}(w),$$

$$\mathcal{L}(w) := \sum_{i \in V} l_i(w), \quad l_i(w) = l(f(x_i, w), y_i),$$

- convex f(w)
 - logistic regression, regularized support vector machines (SVM), LASSO
- Non-convex f(w)
 - Neural Networks

First Order Subset Selection

- Select subset that covers gradient space
- Provides convergence guarantee for convex model

$$S_t^* = \underset{S \subseteq V, \gamma_{t,j} \ge 0 \ \forall j}{\operatorname{arg \, min}} |S| \quad \text{s.t.}$$

$$\|\mathbf{g}_t - \sum_{j \in S} \gamma_{t,j} \mathbf{g}_{t,j}\| \le \epsilon$$

Issues with First Order Subset Selection

- Scale of g is different along different dimensions
 - subsets estimate full gradient only in dimensions with larger gradient scale
- Loss of many data points may have same gradient
 - One representative example chosen
- Subsets only capturing gradient strongly weight same datapoint
 - Lacks diversity
 - Cannot distinguish different subgroups
- How to boost performance?
 - Extra information to distinguish points with similar gradient

Hessian Preconditioner

- ullet Normalize gradient by hessian inverse information via: ${f H}^{-1}{f g}$
- Capture the full gradient in all dimensions equally well
- Contain a more diverse set of datapoints with similar gradients but different curvature properties
- Allow convergence guarantees on corsets trained on with first and second order methods

AdaCore: Extracting Coreset

If we can find S^* we can speedup training by $|V|/|S^*|$ + coreset time by only training on S^*

AdaCore: Adaptive Second Order Coresets

Selecting Subset

$$S_t^* = \underset{S \subseteq V, \gamma_{t,j} \ge 0}{\arg \min} |S|, \quad \text{s.t.}$$

$$\|\overline{\mathbf{H}}_t^{-1} \overline{\mathbf{g}}_t - \sum_{j \in S} \gamma_{t,j} \overline{\mathbf{H}}_{t,j}^{-1} \overline{\mathbf{g}}_{t,j}\| \le \epsilon.$$

Randomized Numerical Linear Algebra (RandNLA):

$$\operatorname{diag}(\mathbf{H}_t) = \mathbb{E}[z \odot (\mathbf{H}_t z)], \quad z \sim Rademacher(0.5)$$

Smoothened Curvature

$$\overline{\mathbf{H}}_t = \sqrt{\frac{(1 - \beta_2) \sum_{i=1}^t \beta_2^{t-i} \operatorname{diag}(\mathbf{H}_i) \operatorname{diag}(\mathbf{H}_i)}{1 - \beta_2^t}}$$

Subset Selection Frequency

• Convex f(w): logistic regression, regularized support vector machines (SVM), LASSO

$$\|H_i^{-1}g_i - H_j^{-1}g_j\| \le O(\|w\|) \|x_i - x_j\|$$

Select subset once before training

- Non-Convex f(w)
 - $\left\| H_i^{-1} g_i H_j^{-1} g_j \right\| \leq O(\|w\|) \| (H_i^{-1} g_i)^{(L)} (H_j^{-1} g_j)^{(L)} \| \qquad \text{[KF'19,M'20]}$
 - Only need to calculate first and second order information of last layer
 - Empirically select subset every R epochs.

Classification Results: CIFAR10

- AdaCore outperforms baseline methods by up to 16.8%
 - ResNet20

AdaCore visits a smaller percentage of the dataset compared to other

methods

See considerable speedup 2x

o ResNet18

	SGD+Momentum
Random	$45.9\% \pm 2.5(87\%)$
CRAIG	$43.6\% \pm 1.6(75\%)$
GRADMATCH	$49.4\% \pm 1.6(74\%)$
GLISTER	$38.6\% \pm 1.6(74\%)$
ADACORE	55.4% ±1.1(74%)

Class Imbalance & Selection Frequency

- One can select a new subset less frequently reducing complexity
- ResNet18 trained on Class imbalanced CIFAR-10
- Subset selected ever R epochs

	S=1%, R=20	S=1%, R=10	S=1%, R=5
AdaCore	57.3% (5%)	57.12 (9.5%)	60.2% (14.5%)
CRAIG	48.6% (8%)	55 (16%)	53.05% (27.5%)
Random	54.7% (8%)	54.6 (18%)	54.6% (33.2%)
GradM	29.9% (8.2%)	29.1% (14.7%)	32.75% (23.2%)
GLISTER	21.1% (8.6%)	17.2% (16%)	14.4% (22.2%)

Thank you

Please come to our poster for more information!

