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Cora Ogbn-products:

2,708 nodes 2,449,029 nodes

5,278 edges 61,859,140 edges

Reference: Geometric deep learning on graphs and manifolds using mixture model CNNs, CVPR 2017
Open Graph Benchmark: Datasets for Machine Learning on Graphs, NeurIPS 2020
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Problem: biased gradient estimation AFVI Eﬁsg’}ii”élﬁﬁ'g

« Two layer model with parameters w.

F(w) = f10 f2(w)
Introduce the random variable &, { to denote the sampling procedure,
For the unbiased features and gradients

Elf1(8)] = fi(+), E[Vfi(s
E[f2( Q)] = f2(-),  E[Vf2(:C)
Unbiased gradients

VF(w) =V fo(w; Q)" Vfi(fa(w); &)
« The true gradients during the sampling procedure in training steps - biased

Vﬁ(w) = V fo(w; C)TVfl(fQ(W; € &)

&l =Vil)
)] = Via()
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for = (1= B) four + Bfa(wy: C)

where t denotes the training step.

Contribution:
 GraphFM-IB: apply FM to node-wise sampling method GraphSAGE
 Rigorous convergence analysis
 Less GPU memory consumption

GraphFM-OB: apply FM to subgraph sampling method GNNAutoScale
« Provide theoretical insight to alleviate the staleness problem of historical
embeddings

« Consistently performance improvement
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GraphFM-IB AFW Engineering
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Push new embeddings into historical embeddings

—p Fetch historical embeddings

Embeddings before and after feature momentum
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In-batch nodes Push new embeddings into historical embeddings
BN One-hop out-of-batch nodes — Fetch historical embeddings
Other out-of-batch nodes ——» Embeddings before and after feature momentum
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hl
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momentum
(a) Original graph (b) Forward propagation in GNNAutoscale (c) Forward propagation with feature momentum
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Backbones Methods Flickr Reddit Yelp ogbn-arxiv ogbn-products
VR-GCN 0.482 +£0.003 0.964 £0.001 0.640 £ 0.002 - —
FastGCN 0.504 £0.001 0.924 £0.001 0.265 £ 0.053 — -
GraphSAINT 0.511 £0.001 0.966 £0.001 0.653 +£0.003 - 0.791 £ 0.002
Cluster-GCN 0.481 £0.005 0.954 £0.001 0.609 £+ 0.005 - 0.790 £+ 0.003
SIGN 0.514 £0.001 0.968 £0.000 0.631 +£0.003 0.720+£0.001 0.776 £ 0.001
SAGE GraphSAGE 0.501 £0.013 0.953+£0.001 0.634+£0.006 0.715+0.003 0.783 £ 0.002
GraphFM-IB 0.513 £0.009 0.963 £0.005 0.641 £0.001 0.713+0.002 0.792 + 0.003
GCN GNNAutoScale 0.5400 0.9545 0.6294 0.7168 0.7666
GraphFM-OB 0.5446 0.9540 - 0.7181 0.7688
GCNII GNNAutoScale 0.5620 0.9677 0.6514 0.7300 0.7724
GraphFM-OB 0.5631 0.9680 0.6529 0.7310 0.7742
PNA GNNAutoScale 0.5667 0.9717 0.6440 0.7250 0.7991
GraphFM-OB 0.5710 0.9712 0.6450 0.7290 0.8047
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GraphFM-IB consumption
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Methods Neighbor sizes Reddit Flickr

GraphSAGE 2 layer full-batch OOM 0.513/4,860M/1.7s
GraphSAGE [25.10] 0.957/3.080M/6.5s  0.512/1,740M/1.6s
GraphSAGE [1,1] 0.931/2,250M/3.3s  0.490/1,310M/1.2s
GraphFM-IB + SAGE | [1,1] 0.957/2,300M/3.9s  0.503/1,480M/1.4s
GraphSAGE 14,4] 0.955/2,320M/4.0s  0.507/1,390M/1.3s
GraphFM-IB + SAGE | [4.,4] 0.958/2,450M/4.2s  0.511/1,540M/1.5s
GraphSAGE 4 layer full-batch OOM 0.514/11,000M/5.2s
GraphSAGE [25,10,10,10] 0.962/10,110M/53s  0.514/6,480M/3.6s
GraphSAGE [1,1,1,1] 0.951/2,700M/5.2s  0.502/1,360M/1.7s
GraphFM-IB + SAGE | [1,1,1,1] 0.962/2,860M/6.2s  0.513/1,700M/2.0s
GraphSAGE [2,2,2,2] 0.958/2,870M/5.8s  0.509/1,470M/1.8s
GraphFM-IB + SAGE | [2,2,2,2] 0.963/3,130M/7.5s  0.513/1,900M/2.4s
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