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q Inverse problems

q Compressed sensing with sparsity prior

Ø solve via greedy algorithms or convex relaxation

§ Sparsity prior

ü natural signals are nearly sparse in some transform domains, e.g. Fourier, wavelet

Limitation: is not strictly sparse Ø inaccurate recovery results
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Key idea: deterministic     leads to fixed range Ø model uncertainties in

ü Uncertainties come from distributional difference between        and

q Compressed sensing with Bayesian generative models (CS-BGM)

§ Prediction

§ Solve for                       via alternating optimization

§ Model Ø allow for slight adjustment of

o maximum a posteriori (MAP) for high-dimensional

o variational inference (VI) for low-dimensional 
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Thank you!


