
Scaling-up Diverse Orthogonal Convolutional
Networks by A Paraunitary Framework

Jiahao Su , Wonmin Byeon , Furong Huang

jiahaosu@umd.edu, wbyeon@nvidia.com, furongh@umd.edu

University of Maryland,

College Park, Maryland, USA

Nvidia Research, Nvidia Corporation,

Santa Clara, California, USA

arXiv: https://arxiv.org/abs/2106.09121

Code: https://github.com/umd-huang-lab/ortho-conv

⋆ † ⋆

⋆

†

mailto:jiahaosu@umd.edu
mailto:wbyeon@nvidia.com
mailto:furongh@umd.edu
https://arxiv.org/abs/2106.09121
https://github.com/umd-huang-lab/ortho-conv

Orthogonal Convolutional Networks
Lipschitz Continuity and Gradient Stability

• Motivations:

• Lipschitz continuity — adversarial robustness.

• Gradient stability — well-conditioned optimization.

•

• Fully-connected layer: is a general matrix.

• Convolutional layer: is a block-Toeplitz matrix.

• The layer is orthogonal iff. the matrix is orthogonal.

W⊤W = I ⇒ ∥y∥2
𝖥 = ∥Wx∥2

𝖥 = x⊤W⊤Wx = x⊤x = ∥x∥2
𝖥

W

W

2

Block Toeplitz matrix

Orthogonal Convolutional Networks
Challenges in Learning Orthogonal Convolutions

• Challenge 1: How to guarantee that the spectrum of block Toeplitz matrix is flat?

• Incorrect: Compute the SVD of the naively flattened convolutional kernel.

• Expensive: Compute the SVD of all frequencies of the Fourier transform.

• Challenge 2: How to maintain the orthogonal constraint during training?

• Inexact: Soft clipping through regularization.

• Expensive: projected gradient descent.

• Solution: Parameterize the convolutional layer as an orthogonal filter bank.

3

Convolutional Layer as MIMO Filter Bank
Property Characterization via Transfer Matrix

• Standard convolutional layer:

•

•

•

• The transfer matrix characterizes
the properties of a convolutional layer.

𝒴:,t = ∑s
𝒲:,t,s * 𝒳:,s

Yt(z) = ∑s
Wts(z)Xs(z)

Y(z) = W(z)X(z)

W(z)

4

Input

Channel 1

Input

Channel 2

Output

Channel 1

Output

Channel 2

a11, b11, ⋯

a22, b22, ⋯

a12, b12, ⋯ a21, b21, ⋯

A two-input-two-output convolutional layer

W(z) = [a11a12
a21a22]

A

+ [b11b12

b21b22]
B

z−1 + ⋯

= A + Bz−1

Convolution theorem

Matrix multiplication

Orthogonal Convolutional Layer as Paraunitary System
From Paraunitary System to Orthogonal Matrices

• Challenge 1: How to guarantee that the block-Toeplitz matrix is orthogonal?

• Solution: Constrain the transfer matrix to be paraunitary.

• A filter bank is orthogonal iff. is paraunitary: .

• A paraunitary matrix is factorized as ,
is orthogonal and is a projection matrix (and is column-orthogonal).

W(z) W†(ejω)W(ejω) = I, ∀ω

W(z) = U[P1 + (I − P1)z−1]⋯[PN + (I − PN)z−1] U
Pn Pn = VnV⊤

n Vn

5

Orthogonal Conv. Paraunitary Matrix
Z-transform

Ortho. Matrix
Factorization

Constrained Optimization over Matrix Manifolds
From Orthogonal Matrices to Unconstrained Parameters

• Challenge 2: How to maintain the orthogonal constraint during training?

• Solution: Parametrize the orthogonal matrices using matrix exponential.

• , where and is a skew-symmetric matrix.

• The skew-symmetric matrix is characterized up its upper-triangle entries.

U = exp(S) exp(S) = ∑
∞

k=0
Sk /k! S

6

Orthogonal Conv. Paraunitary Matrix
Z-transform

Ortho. Matrix
Factorization

Skew-symm.Matrix
Matrix Exp.

Diverse Orthogonal Convolutions
Convolution Variants and Multi-dimensional Extensions

• Convolution variants:

• The design of these variants reduce to

paraunitary systems.

• We can use the same parameterization
(factorization and matrix exponential) to
construct all these variants.

7

• Multi-dimensional extensions:

• Construct a (separable) MD orthogonal

convolution by a number of 1D ones.

• 2D case:

• Also support convolution variants.

H(z1, z2) = H1(z1)H2(z2)

A separable 2D convolution as two 1D convolutions

Lipschitz Networks
Robustness Against Adversarial Attacks

• Lipschitz networks for robustness.

• Linear layer: Orthogonal convolution

• Activation layer: GroupSort activation

• (Optional) Shortcut: Scaled addition

y = αx + (1 − α)g(x), 0 < α < 1 GroupSort Activation

8

Flow-based Generative Models
Image Generation by Residual Flows

• Flow-based generative model:

• Training: From data to latent

• Generation: From Gaussian to data

• Invertible residual network (i-ResNet)

•

• is invertible if is Lipschitz.

• We construct using Lipschitz network.

x z
x

f −1
n hn−1

f −1
n−1 hn−2

f −1
n−2 ⋯ f −1

2 h1
f −1
1 z

z x
z f1 h1

f2 h2
f3 ⋯ fn−1 hn−1

fn x

y = f(x) = x + g(x)

f g

g

9

Bits per dimension (bpd) for MNIST dataset.

Flow-based Generative Model

https://lilianweng.github.io/posts/2018-10-13-flow-models/

Thanks for watching this video!

• arXiv: https://arxiv.org/abs/2106.09121

• Code link: https://github.com/umd-huang-lab/ortho-conv

• Citation:

@article{DBLP:journals/corr/abs-2106-09121,

author = {Jiahao Su, Wonmin Byeon, and Furong Huang},

title = {Scaling-up Diverse Orthogonal Convolutional Networks

with a Paraunitary Framework},

journal = {CoRR},

volume = {abs/2106.09121},

year = {2021}

}

https://arxiv.org/abs/2106.09121
https://github.com/umd-huang-lab/ortho-conv

