

Scaling-up Diverse Orthogonal Convolutional Networks by A Paraunitary Framework

Jiahao Su*, Wonmin Byeon†, Furong Huang*

jiahaosu@umd.edu, wbyeon@nvidia.com, furongh@umd.edu

*University of Maryland,

College Park, Maryland, USA

†Nvidia Research, Nvidia Corporation,

Santa Clara, California, USA

arXiv: https://arxiv.org/abs/2106.09121

Code: https://github.com/umd-huang-lab/ortho-conv

Orthogonal Convolutional Networks

Lipschitz Continuity and Gradient Stability

- Motivations:
 - Lipschitz continuity adversarial robustness.
 - Gradient stability well-conditioned optimization.
- $W^{\mathsf{T}}W = I \Rightarrow ||y||_{\mathsf{F}}^2 = ||Wx||_{\mathsf{F}}^2 = x^{\mathsf{T}}W^{\mathsf{T}}Wx = x^{\mathsf{T}}x = ||x||_{\mathsf{F}}^2$
 - Fully-connected layer: W is a general matrix.
 - Convolutional layer: W is a block-Toeplitz matrix.
 - The layer is orthogonal iff. the matrix is orthogonal.

Block Toeplitz matrix

Orthogonal Convolutional Networks

Challenges in Learning Orthogonal Convolutions

- Challenge 1: How to guarantee that the spectrum of block Toeplitz matrix is flat?
 - Incorrect: Compute the SVD of the naively flattened convolutional kernel.
 - Expensive: Compute the SVD of all frequencies of the Fourier transform.

- Challenge 2: How to maintain the orthogonal constraint during training?
 - Inexact: Soft clipping through regularization.
 - Expensive: projected gradient descent.

• Solution: Parameterize the convolutional layer as an orthogonal filter bank.

Convolutional Layer as MIMO Filter Bank

Property Characterization via Transfer Matrix

• Standard convolutional layer:

•
$$\mathcal{Y}_{:,t} = \sum_{S} \mathcal{W}_{:,t,S} * \mathcal{X}_{:,S}$$
Convolution theorem

•
$$Y_t(z) = \sum_{S} W_{tS}(z)X_{S}(z)$$

Matrix multiplication

•
$$\mathbf{Y}(z) = \mathbf{W}(z)\mathbf{X}(z)$$

• The transfer matrix W(z) characterizes the properties of a convolutional layer.

A two-input-two-output convolutional layer

$$\mathbf{W}(z) = \begin{bmatrix} a_{11}a_{12} \\ a_{21}a_{22} \end{bmatrix} + \begin{bmatrix} b_{11}b_{12} \\ b_{21}b_{22} \end{bmatrix} z^{-1} + \cdots$$

$$= \mathbf{A} + \mathbf{B}z^{-1}$$

Orthogonal Convolutional Layer as Paraunitary System

From Paraunitary System to Orthogonal Matrices

• Challenge 1: How to guarantee that the block-Toeplitz matrix is orthogonal?

- Solution: Constrain the transfer matrix to be paraunitary.
 - A filter bank is orthogonal iff. $\mathbf{W}(z)$ is paraunitary: $\mathbf{W}^{\dagger}(e^{j\omega})\mathbf{W}(e^{j\omega}) = \mathbf{I}, \forall \omega$.
 - A paraunitary matrix is factorized as $\mathbf{W}(z) = \mathbf{U}[\mathbf{P}_1 + (\mathbf{I} \mathbf{P}_1)z^{-1}] \cdots [\mathbf{P}_N + (\mathbf{I} \mathbf{P}_N)z^{-1}]$, \mathbf{U} is orthogonal and \mathbf{P}_n is a projection matrix ($\mathbf{P}_n = \mathbf{V}_n \mathbf{V}_n^{\mathsf{T}}$ and \mathbf{V}_n is column-orthogonal).

Constrained Optimization over Matrix Manifolds

From Orthogonal Matrices to Unconstrained Parameters

• Challenge 2: How to maintain the orthogonal constraint during training?

- Solution: Parametrize the orthogonal matrices using matrix exponential.
 - $\mathbf{U} = \exp(\mathbf{S})$, where $\exp(\mathbf{S}) = \sum_{k=0}^{\infty} \mathbf{S}^k/k!$ and S is a <u>skew-symmetric matrix</u>.
 - The skew-symmetric matrix is characterized up its <u>upper-triangle entries</u>.

Diverse Orthogonal Convolutions

Convolution Variants and Multi-dimensional Extensions

- Convolution variants:
 - The design of these variants reduce to paraunitary systems.
 - We can use the same parameterization (factorization and matrix exponential) to construct all these variants.

Table 1: Variants of convolutions. We present the modified Z-transforms, $\underline{Y}(z)$, $\underline{H}(z)$, and $\underline{X}(z)$ for each convolution such that $\underline{Y}(z) = \underline{H}(z)\underline{X}(z)$ holds. In the table, $X^{[R]}(z) \triangleq [X^{0|R}(z)^{\top}, \dots, X^{R-1|R}(z)^{\top}]^{\top}$ and $\widetilde{X}^{[R]}(z) = [X^{-0|R}(z), \dots, X^{-(R-1)|R}(z)]$. For group convolution, h^g is the filter for the g^{th} group with $H^g(z)$ being its Z-transform, and blkdiag (\cdot) stacks multiple matrices into a block-diagonal matrix.

Convolution Type	Spatial Papragantation	Spectral Representation						
Convolution Type	Spatial Representation	$\underline{\boldsymbol{Y}}(z)$	$\underline{\boldsymbol{H}}(z)$	$\underline{\boldsymbol{X}}(z)$				
Standard	$oldsymbol{y}[i] = \sum_{n \in \mathbb{Z}} oldsymbol{h}[n] oldsymbol{x}[i-n]$	Y(z)	$oldsymbol{H}(z)$	$oldsymbol{X}(z)$				
R-Dilated	$oldsymbol{y}[i] = \sum_{n \in \mathbb{Z}} oldsymbol{h}^{\uparrow R}[n] oldsymbol{x}[i-n]$	$oldsymbol{Y}(z)$	$oldsymbol{H}(z^R)$	$oldsymbol{X}(z)$				
$\downarrow R$ -Strided	$oldsymbol{y}[i] = \sum_{n \in \mathbb{Z}} oldsymbol{h}[n] oldsymbol{x}[Ri-n]$	$oldsymbol{Y}(z)$	$\widetilde{m{H}}^{[R]}(z)$	$oldsymbol{X}^{[R]}(z)$				
$\uparrow R$ -Strided	$oldsymbol{y}[i] = \sum_{n \in \mathbb{Z}} oldsymbol{h}[n] oldsymbol{x}^{\uparrow R}[i-n]$	$oldsymbol{Y}^{[R]}(z)$	$oldsymbol{H}^{[R]}(z)$	$oldsymbol{X}(z)$				
G-Group	$m{y}[i] = \sum_{n \in \mathbb{Z}} blkdiag\left(\{m{h}^g[n]\} ight) m{x}[i-n]$	$oldsymbol{Y}(z)$	$blkdiag\left(\{\boldsymbol{H}^g(z)\}\right)$	$oldsymbol{X}(z)$				

- Multi-dimensional extensions:
 - Construct a (separable) MD orthogonal convolution by a number of 1D ones.
 - 2D case: $\mathbf{H}(z_1, z_2) = \mathbf{H_1}(z_1)\mathbf{H_2}(z_2)$
 - Also support convolution variants.

A separable 2D convolution as two 1D convolutions

Lipschitz Networks

Robustness Against Adversarial Attacks

- Lipschitz networks for robustness.
 - Linear layer: Orthogonal convolution
 - Activation layer: GroupSort activation
 - (Optional) Shortcut: Scaled addition

$$y = \alpha x + (1 - \alpha)g(x), 0 < \alpha < 1$$

GroupSort Activation

22 layers							34 layers														
Width	1	3	6	8	10	1	3	6	8	10	Width	1	3	6	8	10	1	3	6	8	10
	Clean (%) PGD with $\epsilon = 36/255$ (%)							Clean (%) PGD with $\epsilon = 36/255$ (/255 (%	o)						
Ours	79.90	82.22	87.21	88.10	87.82	67.95	70.88	74.30	75.12	76.46	Ours	81.24	88.17	88.92	-	-	69.21	71.85	75.09	-	-
Cayley	79.11	84.82	85.85	-	-	69.79	65.61	74.81	-	-	Cayley	82.46	84.29	-	-	-	71.27	74.73	-	-	-
RKO	82.71	84.19	84.33	84.55	-	72.40	74.36	75.66	76.41	-	RKO	81.51	83.24	83.92	-	-	71.38	73.84	75.03	-	-

Flow-based Generative Models

Image Generation by Residual Flows

- Flow-based generative model:
 - Training: From data x to latent z $x \xrightarrow{f_n^{-1}} h_{n-1} \xrightarrow{f_{n-1}^{-1}} h_{n-2} \xrightarrow{f_{n-2}^{-1}} \cdots \xrightarrow{f_2^{-1}} h_1 \xrightarrow{f_1^{-1}} z$
 - Generation: From Gaussian z to data x $z \xrightarrow{f_1} h_1 \xrightarrow{f_2} h_2 \xrightarrow{f_3} \cdots \xrightarrow{f_{n-1}} h_{n-1} \xrightarrow{f_n} x$

- Invertible residual network (i-ResNet)
 - $\bullet \quad y = f(x) = x + g(x)$
 - f is invertible if g is Lipschitz.
 - We construct g using Lipschitz network.

Flow-based Generative Model https://lilianweng.github.io/posts/2018-10-13-flow-models/

Model	MNIST
Glow (Kingma & Dhariwal, 2018)	1.05
FFJORD (Grathwohl et al., 2018)	0.99
i-ResNet (Behrmann et al., 2019)	1.05
Residual Flow (Chen et al., 2019)	0.97
SC-Fac Residual Flow (Ours)	0.896

Bits per dimension (bpd) for MNIST dataset.

Thanks for watching this video!

- arXiv: https://arxiv.org/abs/2106.09121
- Code link: https://github.com/umd-huang-lab/ortho-conv

• Citation:

```
@article {DBLP:journals/corr/abs-2106-09121,
 author = {Jiahao Su, Wonmin Byeon, and Furong Huang},
         = {Scaling-up Diverse Orthogonal Convolutional Networks
 title
             with a Paraunitary Framework},
 journal = \{CoRR\},\
 volume = \{abs/2106.09121\},
         = \{2021\}
 year
```