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Orthogonal Convolutional Networks 
Lipschitz Continuity and Gradient Stability

• Motivations:

• Lipschitz continuity — adversarial robustness.


• Gradient stability — well-conditioned optimization.


• 


• Fully-connected layer:  is a general matrix.


• Convolutional layer:  is a block-Toeplitz matrix.


• The layer is orthogonal iff. the matrix is orthogonal.

W⊤W = I ⇒ ∥y∥2
𝖥 = ∥Wx∥2

𝖥 = x⊤W⊤Wx = x⊤x = ∥x∥2
𝖥

W

W
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Block Toeplitz matrix



Orthogonal Convolutional Networks
Challenges in Learning Orthogonal Convolutions

• Challenge 1: How to guarantee that the spectrum of block Toeplitz matrix is flat?

• Incorrect: Compute the SVD of the naively flattened convolutional kernel.


• Expensive: Compute the SVD of all frequencies of the Fourier transform.


• Challenge 2: How to maintain the orthogonal constraint during training? 

• Inexact: Soft clipping through regularization.


• Expensive: projected gradient descent.


• Solution: Parameterize the convolutional layer as an orthogonal filter bank. 
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Convolutional Layer as MIMO Filter Bank
Property Characterization via Transfer Matrix

• Standard convolutional layer:


•  


•  


•  


• The transfer matrix  characterizes 
the properties of a convolutional layer.

𝒴:,t = ∑s
𝒲:,t,s * 𝒳:,s

Yt(z) = ∑s
Wts(z)Xs(z)

Y(z) = W(z)X(z)

W(z)
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a11, b11, ⋯

a22, b22, ⋯

a12, b12, ⋯ a21, b21, ⋯

A two-input-two-output convolutional layer

W(z) = [a11a12
a21a22]

A

+ [b11b12

b21b22]
B

z−1 + ⋯

= A + Bz−1

Convolution theorem

Matrix multiplication



Orthogonal Convolutional Layer as Paraunitary System
From Paraunitary System to Orthogonal Matrices

• Challenge 1: How to guarantee that the block-Toeplitz matrix is orthogonal?


• Solution: Constrain the transfer matrix to be paraunitary.

• A filter bank is orthogonal iff.  is paraunitary: .


• A paraunitary matrix is factorized as ,  
is orthogonal and  is a projection matrix (  and  is column-orthogonal).

W(z) W†(ejω)W(ejω) = I, ∀ω

W(z) = U[P1 + (I − P1)z−1]⋯[PN + (I − PN)z−1] U
Pn Pn = VnV⊤

n Vn
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Constrained Optimization over Matrix Manifolds 
From Orthogonal Matrices to Unconstrained Parameters

• Challenge 2: How to maintain the orthogonal constraint during training?


• Solution: Parametrize the orthogonal matrices using matrix exponential.


• , where  and  is a skew-symmetric matrix.


• The skew-symmetric matrix is characterized up its upper-triangle entries.

U = exp(S) exp(S) = ∑
∞

k=0
Sk /k! S
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Diverse Orthogonal Convolutions
Convolution Variants and Multi-dimensional Extensions

• Convolution variants:

• The design of these variants reduce to 

paraunitary systems.


• We can use the same parameterization 
(factorization and matrix exponential) to 
construct all these variants.
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• Multi-dimensional extensions:

• Construct a (separable) MD orthogonal 

convolution by a number of 1D ones.


• 2D case: 


• Also support convolution variants.

H(z1, z2) = H1(z1)H2(z2)

A separable 2D convolution as two 1D convolutions 



Lipschitz Networks
Robustness Against Adversarial Attacks

• Lipschitz networks for robustness.

• Linear layer: Orthogonal convolution


• Activation layer: GroupSort activation


• (Optional) Shortcut: Scaled addition


y = αx + (1 − α)g(x), 0 < α < 1 GroupSort Activation
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Flow-based Generative Models
Image Generation by Residual Flows

• Flow-based generative model:

• Training: From data  to latent 




• Generation: From Gaussian  to data 



• Invertible residual network (i-ResNet)

• 


•   is invertible if  is Lipschitz.


• We construct  using Lipschitz network.

x z
x

f −1
n hn−1

f −1
n−1 hn−2

f −1
n−2 ⋯ f −1

2 h1
f −1
1 z

z x
z f1 h1

f2 h2
f3 ⋯ fn−1 hn−1

fn x

y = f(x) = x + g(x)

f g

g
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Bits per dimension (bpd) for MNIST dataset.

Flow-based Generative Model

https://lilianweng.github.io/posts/2018-10-13-flow-models/



Thanks for watching this video!
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