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Orthogonal Convolutional Networks
Lipschitz Continuity and Gradient Stability

e Motivations:

n.-loeplitz Blocks
* Lipschitz continuity — adversarial robustness. / -

* Gradient stability — well-conditioned optimization.

-Toeplitz Blocks

c WIW=1T= |]yllz2=||Wx|2=x"W Wx=x"x=|x||

.y

* Fully-connected layer: W 1s a general matrix.

* Convolutional layer: W 1s a block-Toeplitz matrix. \. - -

* The layer 1s orthogonal 1ff. the matrix 1s orthogonal.

Block Toeplitz matrix



Orthogonal Convolutional Networks
Challenges in Learning Orthogonal Convolutions

 Challenge 1: How to guarantee that the spectrum of block Toeplitz matrix is flat?

* Incorrect: Compute the SVD of the naively flattened convolutional kernel.

« Expensive: Compute the SVD of all frequencies of the Fourier transform.

 Challenge 2: How to maintain the orthogonal constraint during training?

* Inexact: Soft clipping through regularization.

» Expensive: projected gradient descent.

e Solution: Parameterize the convolutional layer as an orthogonal filter bank.



Convolutional Layer as MIMO Filter Bank

Property Characterization via Transfer Matrix

* Standard convolutional layer:

¢ ?Z,t — Zs %I,t,s 8 %:,S
l Convolution theorem

. Y(2) = ZS Wi(2)X(2)

l Matrix multiplication

* Y(2) = W(@)X(2)

e The transfer matrix W(z) characterizes
the properties of a convolutional layer.

Input - Output
Channel 1 Channel 1
Input - Output
Channel 2 Channel 2

A two-1nput-two-output convolutional layer

b11b12

d11dr2 i
W(z) = + 77+
14 bs.b5y
A B

= A+ Bz !



Orthogonal Convolutional Layer as Paraunitary System
From Paraunitary System to Orthogonal Matrices

 Challenge 1: How to guarantee that the block-Toeplitz matrix is orthogonal?

e Solution: Constrain the transfer matrix to be paraunitary.
» A filter bank is orthogonal iff. W(2) is paraunitary: Wi(e/*)W(e/?) = 1, V.

A paraunitary matrix 1s factorized as W(z) = U[P; + (I — Pl)z_l]---[PN + (I — PN)Z_l], U
1s orthogonal and P, 1s a projection matrix (P, =V _ V,  and V, 1s column-orthogonal).

n

Z-transform Factorization

Orthogonal Conv. Paraunitary Matrix Ortho. Matrix



Constrained Optimization over Matrix Manifolds
From Orthogonal Matrices to Unconstrained Parameters

 Challenge 2: How to maintain the orthogonal constraint during training?

* Solution: Parametrize the orthogonal matrices using matrix exponential.

. U =exp(S), where exp(S) = Zoio S¥/k! and S is a skew-symmetric matrix.

* The skew-symmetric matrix 1s characterized up 1ts upper-triangle entries.

Z-transform Factorization Matrix Exp.
Orthogonal Conv. Paraunitary Matrix Ortho. Matrix




Diverse Orthogonal Convolutions
Convolution Variants and Multi-dimensional Extensions

e Convolution variants:

* The design of these variants reduce to
paraunitary systems.

* We can use the same parameterization
(factorization and matrix exponential) to
construct all these variants.

Table 1: Variants of convolutions. We present the modified Z-transforms, Y (z), H(z), and X (z) for each
convolution such that Y (z) = H (z) X (2) holds. In the table, X FI(2) & [XO1B ()T, ..., XE-UER()TT

and X (7 (2) = [ X7YE(2),. .., X ~(B=DIR ()], For group convolution, hY is the filter for the ¢'" group with
H?Y(z) being its Z-transform, and blkdiag (-) stacks multiple matrices into a block-diagonal matrix.

: : : Spectral Representation
Convolution Type Spatial Representation Y(2) H(2) X(2)
Standard yli| = Y, ez hInlz]i — n] Y (2) H(z) X (z)
R-Dilated yli] =3 ez R n]x[i — n] Y (2) E(ZR) X (2)
| R-Strided y[i] =X,z hln]z[Ri — n] Y (2) HIE(2) X (%)
1 R-Strided y[i] =Y,z Rn]x[i — n] Y [Bl(2) HEl(2) X (2)
G-Group yli] = >, ez blkdiag ({h9[n]})x[i —n] | Y (z) blkdiag({HY(2)}) X (z)

e Multi-dimensional extensions:

* Construct a (separable) MD orthogonal
convolution by a number of 1D ones.

« 2D case: H(zy,20) = H{(z))H5(2,)

* Also support convolution variants.

Input

I I

Intermediate

output Kernel

Kernel Output

A separable 2D convolution as two 1D convolutions



Lipschitz Networks

Robustness Against Adversarial Attacks

* Lipschitz networks for robustness.
* Linear layer: Orthogonal convolution
* Activation layer: GroupSort activation

* (Optional) Shortcut: Scaled addition

I E R RTEE

y=ax+ ({1 —-a)gk), 0<a<l GroupSort Activation
22 layers 34 layers
Width | 1 3 6 8 10 | 1 3 6 8 10 Width | 1 3 6 8 10 | 1 3 6 8 10
Clean (%) PGD with € = 36/255 (%) Clean (%) PGD with € = 36/255 (%)
Ours | 79.90 82.22 87.21 88.10 87.82 | 67.95 70.88 74.30 75.12 76.46 Ours | 81.24 88.17 88.92 - - 169.21 71.85 75.09 - -
Cayley | 79.11 84.82 85.85 - - 16979 65.61 7481 @ - - Cayley | 82.46 84.29 - - - | 71.27 7473 - - -
RKO |[82.71 84.19 84.33 8455 - |72.40 7436 75.66 7641 - RKO |81.51 83.24 83.92 - - | 71.38 73.84 75.03 - -




Flow-based Generative Models
Image Generation by Residual Flows

. f1(zo) fi(zi—1) fiy1(zi)

* Flow-based generative model: @ @ u @:
» Tramning: From data x to latent z / /I\ \ / J\/\ / /\41[\’\
\ > /’ \\\ I $/I ‘\\ | "'

X

! fli fils ! /it

n 2
x—>hn_1 a— n—2 —> —)hl

1_ /
—_— Z
zo ~ Po(zo) z; ~ p;i(z;) zZg ~ Pi(ZK)

 (Generation: From Gaussian z to data x Flow-based Generative Model
Ja1 Jn

7 i hl é) h2 é) cer | = https://lilhanweng.github.10/posts/2018-10-13-flow-models/
n_

Model MNIST

Glow (Kingma & Dhariwal, 2018) 1.05
FFJORD (Grathwohl et al., 2018) 0.99

* Invertible residual network (1-ResNet)

¢« y=f(x)=x+4+ g(x) 1-ResNet (Behrmann et al., 2019) 1.05
o . S . Residual Flow (Chen et al., 2019) 0.97

* f 1sinvertible if g 1s Lipschitz. ,
SC-Fac Residual Flow (Ours) 0.896

*  We construct g using Lipschitz network. Bits per dimension (bpd) for MNIST dataset.



Thanks for watching this video!

» arXiv: https://arxiv.org/abs/2106.09121
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