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Problem Definition

Online Caching

Sequence of pages Γ = ⟨p1, p2, . . . ⟩, pi ∈ U arrives online

Cache can not store more than k pages at any time, pay 1 per cache
miss

Learning-augmented setting: Algorithm receives a prediction for the
next arrival time of the requested page

Goal: Minimize the number of cache misses
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Motivation

Why Learning-augmented algorithms?

Traditional algorithms provide guarantees over all inputs

Learning-augmented algorithms use predictions to improve
performance

Also retains worst-case guarantees

Parsimonious

Obtaining predictions is computationally expensive

Desirable to use predictions parsimoniously
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Our Contributions

Allow the algorithm to query b pages per cache miss

Develop an algorithm that achieves competitive ratio of

O(logb+1 k) when predictions are good
O(log k) even when predictions are bad

Our algorithm achieves a near-optimal trade-off between the
competitive ratio and no. of queries per cache miss

Experimentally show that making around 10% queries

improves over traditional algorithms
match previous learning-augmented algorithms
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Main Results

Adaptive query eviction algorithm

Based on randomized marking algorithm

Query b unmarked pages

Evict page with furthest predicted next arrival

Theorem

For any integer b > 0, there is an
O(min{logb+1 k +E[η]/opt, log k})-competitive algorithm for caching that
makes at most b queries per cache miss.
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Main Results

High level idea

If predictions are correct, the evicted page will not arrive in the next
k/(b + 1) time steps (in expectation)

Switch to randomized marking when the algorithm makes too many
mistakes

Ensures competitive ratio does not exceed O(log k)
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Experiments

Datasets

CitiBike 2018

Sequence length: 25000, cache size: 500

Predictions: Ground truth + lognormal error
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