

Constrained Offline Policy Optimization

Nicholas Polosky¹ Bruno C. da Silva²† Madalina Fiterau²† Jithin Jagannath¹†

Contact: npolosky@androcs.com

¹ANDRO Computational Solutions, LLC

²University of Massachusetts Amherst

†Shared Senior Authorship

MOTIVATION & BACKGROUND

Trained via Offline RL

Issues:

- Unreliable policy evaluation (distributional shift)
- 2. Does the data accurately represent the underlying MDP?

MOTIVATION & BACKGROUND

Trained via Offline RL

Issues:

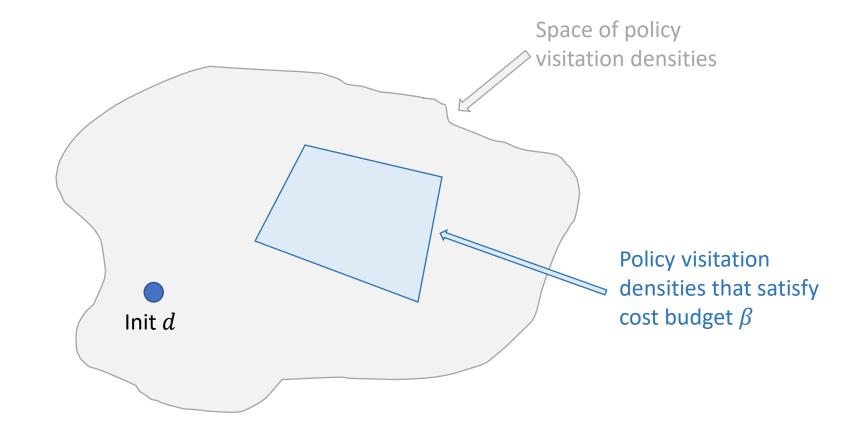
- Unreliable policy evaluation (distributional shift)
- 2. Does the data accurately represent the underlying MDP?

Question: Is offline RL suitable for safety-critical environments?

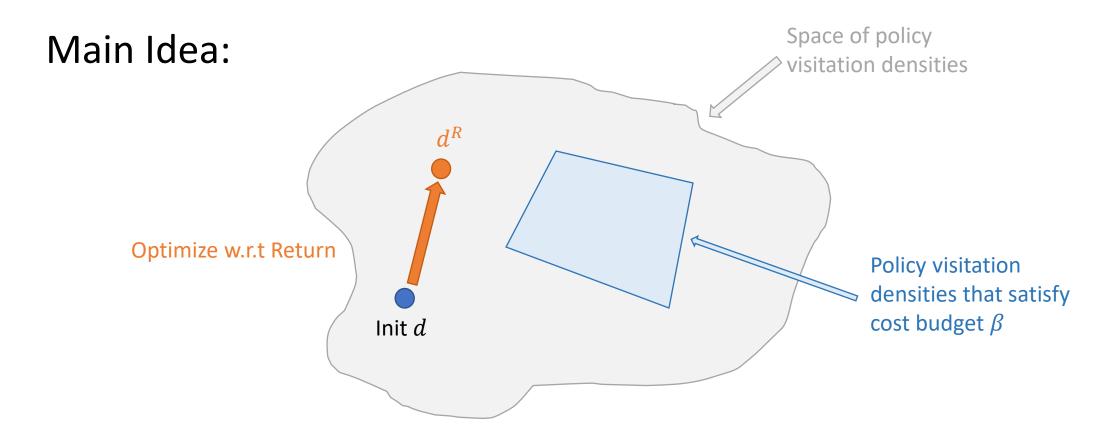
Model safety-critical environments using Constrained Markov Decision Processes (CMDPs)

Model safety-critical environments using Constrained Markov Decision Processes (CMDPs)

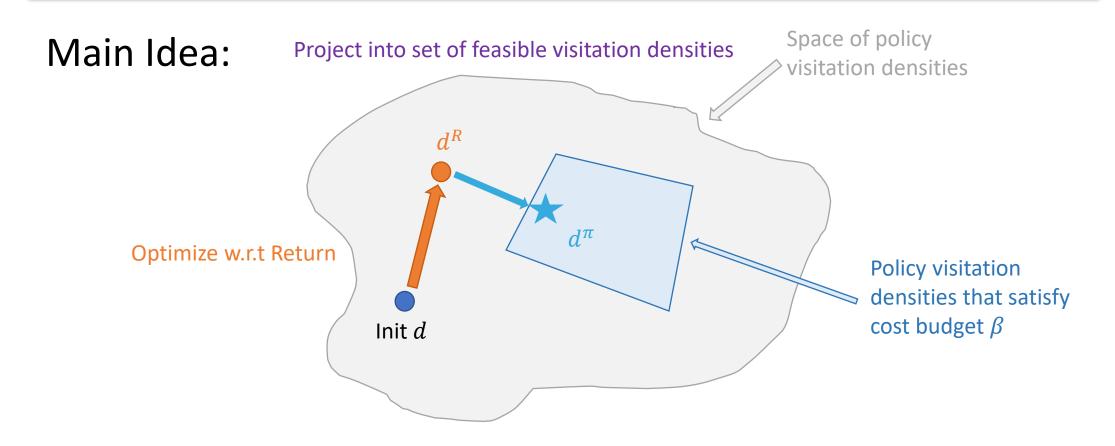
Main Idea:



Model safety-critical environments using Constrained Markov Decision Processes (CMDPs)



Model safety-critical environments using Constrained Markov Decision Processes (CMDPs)



Assume we are given the visitation density, d^R , of a policy that maximizes return

Assume we are given the visitation density, d^R , of a policy that maximizes return

We want to find the policy with the *closest* visitation to d^R that satisfies the cost budget β

Problem:

$$\min_{\pi} D(d^{\pi}, d^{R})$$
 s.t. $\rho_{C}(\pi) \leq \beta$

where $\rho_C(\pi)$ is the cost-value of the policy, β is the cost budget, and D is a metric or pseudo-metric on policy space.

Assume we are given the visitation density, d^R , of a policy that maximizes return

We want to find the policy with the *closest* visitation to d^R that satisfies the cost budget β

Problem:

$$\min_{\pi} D(d^{\pi}, d^{R})$$
 s.t. $\rho_{C}(\pi) \leq \beta$

where $\rho_{\mathcal{C}}(\pi)$ is the cost-value of the policy, β is the cost budget, and D is a metric or pseudo-metric on policy space.

Take the Lagrangian Expand the OPE term Rearrange, we get:

$$\min_{\pi} \max_{\lambda \geq 0, \nu} \min_{d} D(d, d^{R}) + \sum_{\sigma} d(s, \alpha) (\lambda C(s, \alpha) + \nu) - (\lambda \beta + \nu) \quad s. \, t. \, d(s, \alpha) = P_{*}^{\pi} d(s, \alpha)$$

Assume we are given the visitation density, d^R , of a policy that maximizes return

We want to find the policy with the *closest* visitation to d^R that satisfies the cost budget β

Problem:

$$\min_{\pi} D(d^{\pi}, d^{R})$$
 s.t. $\rho_{C}(\pi) \leq \beta$

where $\rho_C(\pi)$ is the cost-value of the policy, β is the cost budget, and D is a metric or pseudo-metric on policy space.

Take the Lagrangian Expand the OPE term Rearrange, we get:

$$\min_{\pi} \max_{\lambda \geq 0, \nu} \min_{d} D(d, d^{R}) + \sum_{\sigma} d(s, \alpha) (\lambda C(s, \alpha) + \nu) - (\lambda \beta + \nu) \quad s. \, t. \, d(s, \alpha) = P_{*}^{\pi} d(s, \alpha)$$

We will leverage ideas from the Distribution Correction Estimation (DICE) Offline RL framework

Assume we are given the visitation density, d^R , of a policy that maximizes return

We want to find the policy with the *closest* visitation to d^R that satisfies the cost budget β

Problem:

$$\min_{\pi} D(d^{\pi}, d^{R})$$
 s.t. $\rho_{C}(\pi) \leq \beta$

where $\rho_{\mathcal{C}}(\pi)$ is the cost-value of the policy, β is the cost budget, and D is a metric or pseudo-metric on policy space.

Take the Lagrangian Expand the OPE term Rearrange, we get:

$$\min_{\pi} \max_{\lambda \geq 0, \nu} \min_{d} D(d, d^{R}) + \sum_{\sigma} d(s, \alpha) (\lambda C(s, \alpha) + \nu) - (\lambda \beta + \nu) \quad s. \, t. \, d(s, \alpha) = P_{*}^{\pi} d(s, \alpha)$$

We will leverage ideas from the Distribution Correction Estimation (DICE) Offline RL framework

From DICE and Fenchel-Rockafeller duality we have:

Primal $\min_{x} f(x) + g(Ax)$

Dual $\max_{v} -f_*(A_*y) - g_*(y)$

Assume we are given the visitation density, d^R , of a policy that maximizes return

We want to find the policy with the *closest* visitation to d^R that satisfies the cost budget β

Problem:

$$\min_{\pi} D(d^{\pi}, d^{R})$$
 s.t. $\rho_{C}(\pi) \leq \beta$

where $\rho_{\mathcal{C}}(\pi)$ is the cost-value of the policy, β is the cost budget, and D is a metric or pseudo-metric on policy space.

Take the Lagrangian Expand the OPE term Rearrange, we get:

$$\min_{\pi} \max_{\lambda \geq 0, \nu} \min_{d} D(d, d^{R}) + \sum_{\sigma} d(s, \sigma)(\lambda C(s, \sigma) + \nu) - (\lambda \beta + \nu) s. t. d(s, \sigma) = P_{*}^{\pi} d(s, \sigma)$$

$$f(d)$$

We will leverage ideas from the Distribution Correction Estimation (DICE) Offline RL framework

From DICE and Fenchel-Rockafeller duality we have:

Primal
$$\min_{x} f(x) + g(Ax)$$

Dual
$$\max_{y}^{x} -f_*(A_*y) - g_*(y)$$

Assume we are given the visitation density, d^R , of a policy that maximizes return

We want to find the policy with the *closest* visitation to d^R that satisfies the cost budget β

Problem:

$$\min_{\pi} D(d^{\pi}, d^{R})$$
 s.t. $\rho_{C}(\pi) \leq \beta$

where $\rho_{\mathcal{C}}(\pi)$ is the cost-value of the policy, β is the cost budget, and D is a metric or pseudo-metric on policy space.

Take the Lagrangian Expand the OPE term Rearrange, we get:

$$\min_{\pi} \max_{\lambda \geq 0, \nu} \min_{d} D(d, d^{R}) + \sum_{s} d(s, a)(\lambda C(s, a) + \nu) - (\lambda \beta + \nu) s. t. d(s, a) = P_{*}^{\pi} d(s, a)$$

$$f(d)$$

$$g(d)$$

We will leverage ideas from the Distribution Correction Estimation (DICE) Offline RL framework

From DICE and Fenchel-Rockafeller duality we have:

Primal $\min_{x} f(x) + g(Ax)$

Dual $\max_{v} -f_*(A_*y) - g_*(y)$

Assume we are given the visitation density, d^R , of a policy that maximizes return

We want to find the policy with the *closest* visitation to d^R that satisfies the cost budget β

Problem:

$$\min_{\pi} D(d^{\pi}, d^{R})$$
 s.t. $\rho_{C}(\pi) \leq \beta$

where $\rho_{\mathcal{C}}(\pi)$ is the cost-value of the policy, β is the cost budget, and D is a metric or pseudo-metric on policy space.

Take the Lagrangian Expand the OPE term Rearrange, we get:

$$\min_{\pi} \max_{\lambda \ge 0, \nu} \min_{d} D(d, d^{R}) + \sum_{\sigma} d(s, \alpha)(\lambda C(s, \alpha) + \nu) - (\lambda \beta + \nu) \int_{\sigma} s. t. d(s, \alpha) = P_{*}^{\pi} d(s, \alpha) \int_{\sigma} d(s, \alpha) d(s, \alpha$$

We will leverage ideas from the Distribution Correction Estimation (DICE) Offline RL framework

From DICE and Fenchel-Rockafeller duality we have:

Primal
$$\min_{x} f(x) + g(Ax)$$

Dual
$$\max_{y}^{x} -f_*(A_*y) - g_*(y)$$

Pick a distance metric *D* and transform

Transforming allows to optimize π directly, rather than through visitation d.

Recall: we assumed we had d^R

Recall: we assumed we had d^R

If we have d^R :

Run constrained projection to get safe policy

Recall: we assumed we had d^R

If we have d^R :

Run constrained projection to get safe policy

If we don't have d^R :

Run offline RL w.r.t reward to find d^R , then do constrained projection

Recall: we assumed we had d^R

If we have d^R :

Run constrained projection to get safe policy

If we don't have d^R :

Run offline RL w.r.t reward to find d^R , then do constrained projection

Issue 2: What if the data set doesn't capture MDP dynamics?

Recall: we assumed we had d^R

If we have d^R :

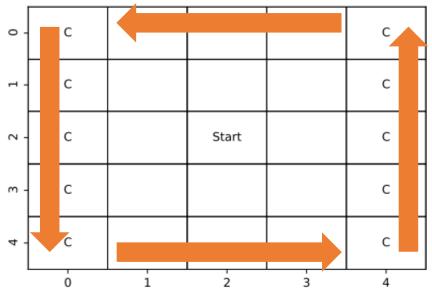
Run constrained projection to get safe policy

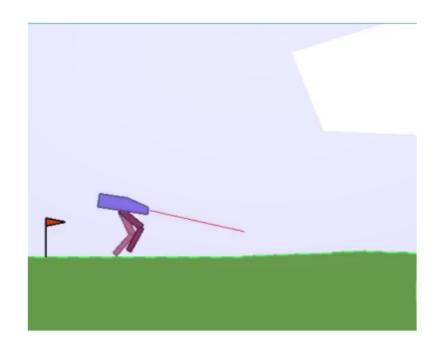
If we don't have d^R :

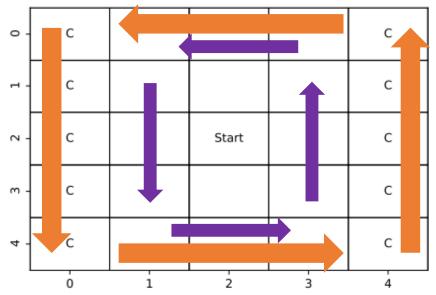
Run offline RL w.r.t reward to find d^R , then do constrained projection

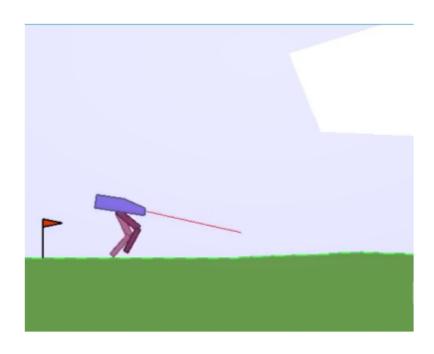
Issue 2: What if the data set doesn't capture MDP dynamics?

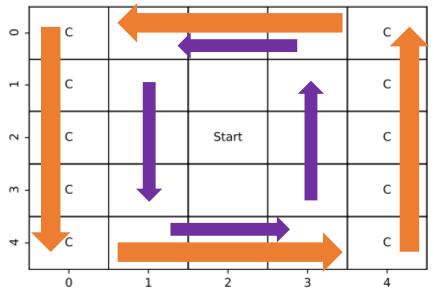
Answer: Novel finite sample upper confidence interval on policy cost Details in the paper!

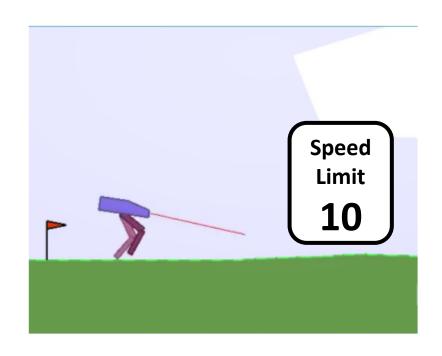


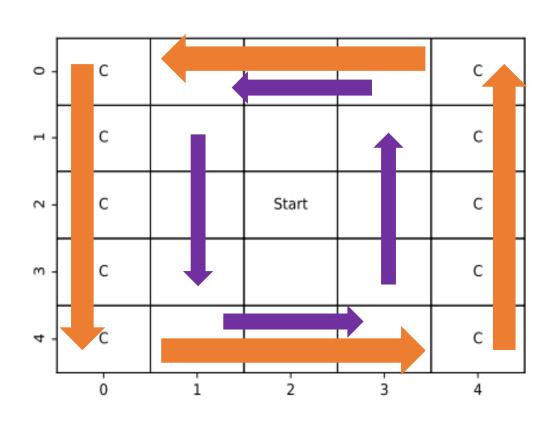


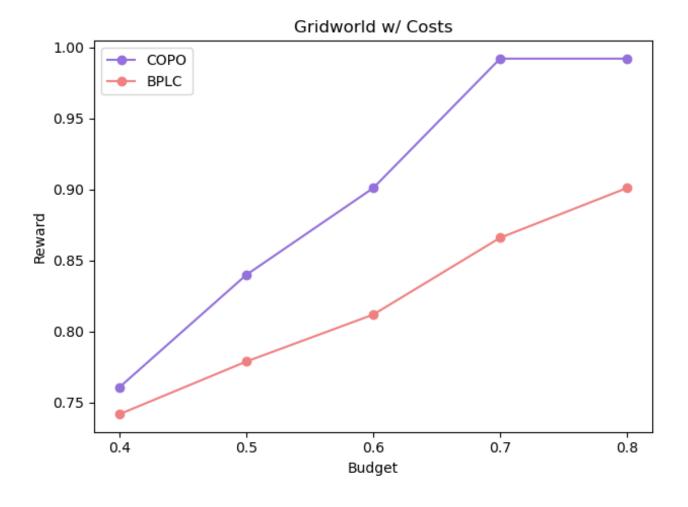


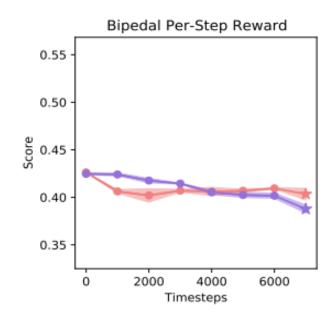


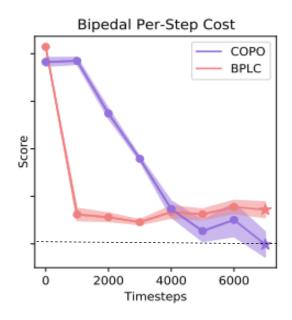


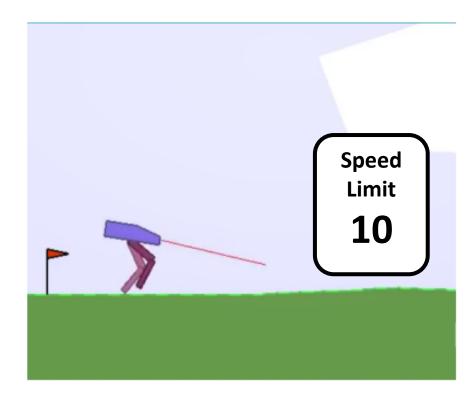












Conclusion

COPO Offline RL Algorithm:

- 1. Suitable for safety-critical applications
- 2. Novel Constrained Projection
- 3. Finite Sample Confidence Interval

Conclusion

COPO Offline RL Algorithm:

- 1. Suitable for safety-critical applications
- 2. Novel Constrained Projection
- 3. Finite Sample Confidence Interval

COPO empirically outperforms the SOTA method BPLC

Conclusion

COPO Offline RL Algorithm:

- 1. Suitable for safety-critical applications
- 2. Novel Constrained Projection
- 3. Finite Sample Confidence Interval

COPO empirically outperforms the SOTA method BPLC

For more details visit Poster #910