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Gradient methods have many applications in 
modern machine learning
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Stochastic Approximation: Let’s consider a simple 
smooth convex stochastic approximation problem.

We want to minimize a function f : 

Stochastic approximation assumes exogenous noise model: 



This problem seems to be fully solved

• Minimax optimal rates are known:
• SGD achieves minimax optimal rate:

• Similar optimality results were also known in the nonconvex case.

• However, SGD is often suboptimal in practice.

[A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley & Sons, 1983]
[Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J., Srebro, N., & Woodworth, B. (2019). Lower bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365.]
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One way to close the gap might be to move 
beyond the worst case analysis.

Worst case function may not occur.

1. Smooth analysis [Spielman, D. A. 2005.]

2. We may assume a distribution over the problem 
instances. [Hoare, C. 1962; Pedregosa & Scieur, 2020; 
Lacotte & Pilanci, 2020; Paquette et al., 2021]

3. We may provide an instance-dependent bound. 
[Fagin et al., 2003; Afshani et al., 2017, Khamaru et 
al., 2021; Pananjady & Wainwright, 2020]
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3. We may provide an instance-dependent bound. 
[Fagin et al., 2003; Afshani et al., 2017, Khamaru et 
al., 2021; Pananjady & Wainwright, 2020]

In our problem: we look for bounds that depend on the 
iteration-wise noise level



From the view of instance-level complexity,
SGD is far from optimal.

Orabona, Francesco. "A modern introduction to online learning." arXiv preprint arXiv:1912.13213 (2019).



The gap can not be explained by absolute 
constants.

Mountain shape noise for different values
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Dynamic error bounds is better but requires 
knowledge of the noise level.

We can achieve this bound with moment estimation under 
additional regularity conditions.


