

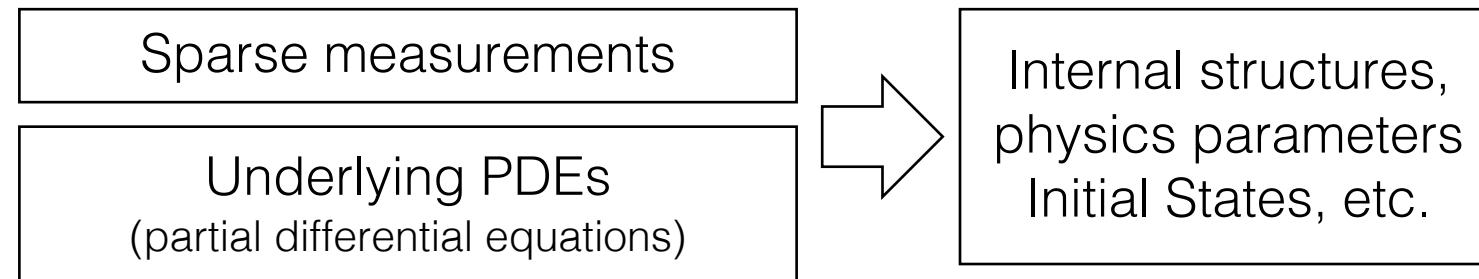
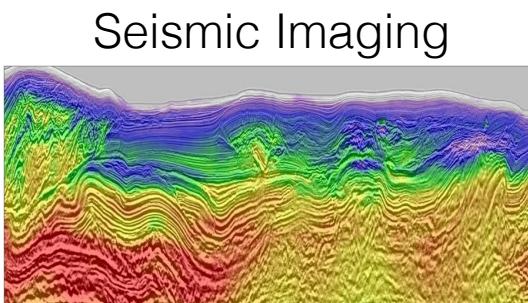
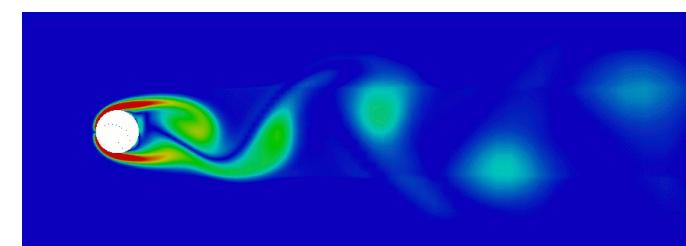
Learning to Solve PDE-constrained Inverse Problems with Graph Networks

Qingqing Zhao, David B. Lindell, Gordon Wetzstein
Stanford University

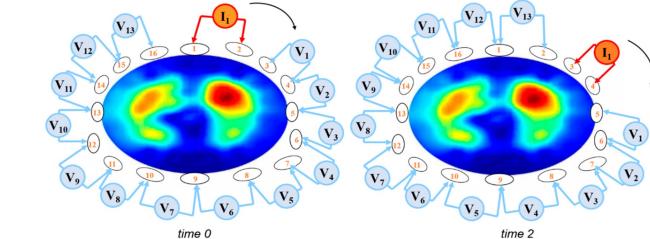
ICML 2022

PDE-constrained Inverse Problem

- Goal: Inferring knowledge from observation data by leveraging simulation and mathematical models (PDEs)

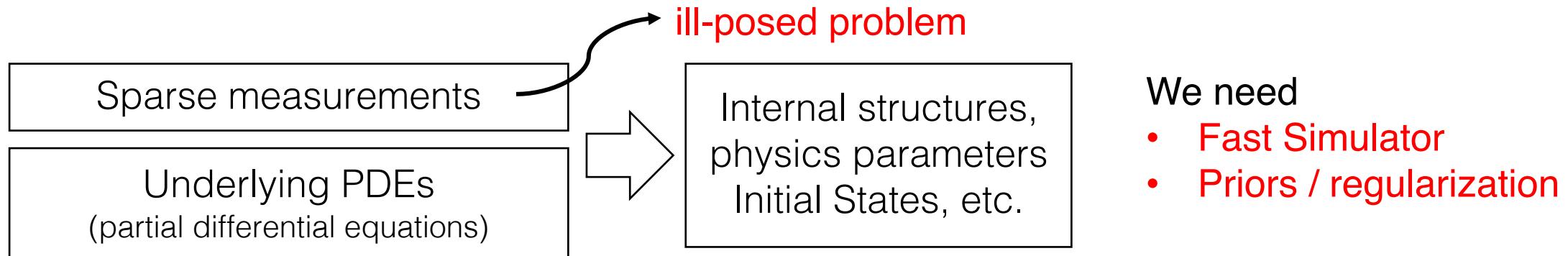
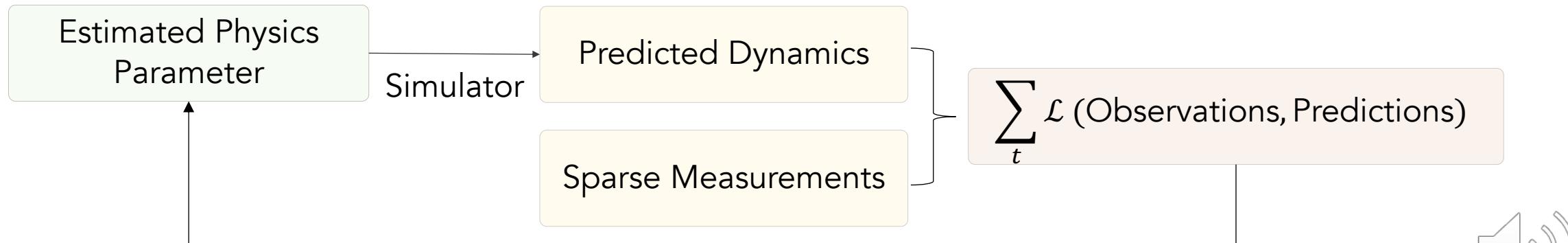


Electrical impedance tomography



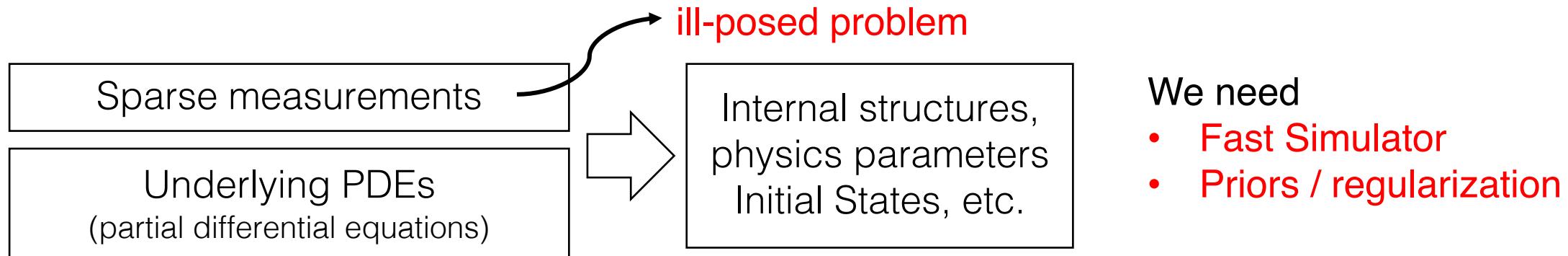
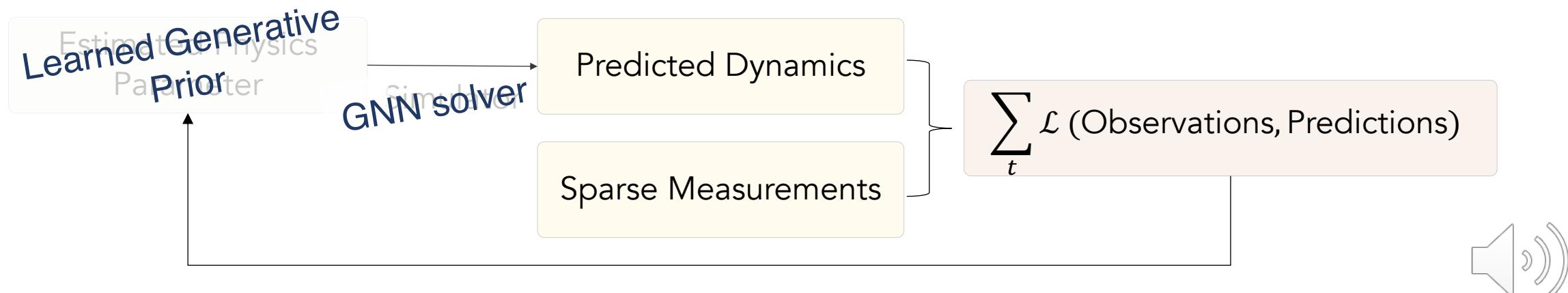
PDE-constrained Inverse Problem

- Goal: Inferring knowledge from observation data by leveraging simulation and mathematical models (PDEs)



PDE-constrained Inverse Problem

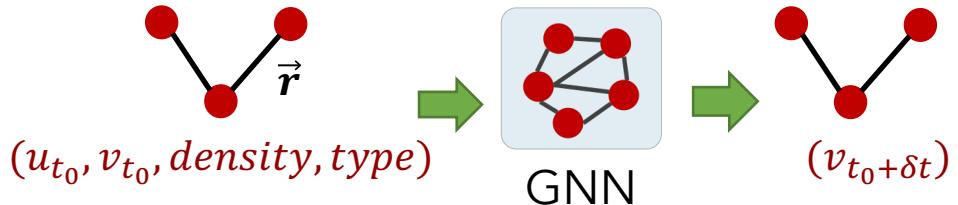
- Goal: Inferring knowledge from observation data by leveraging simulation and mathematical models (PDEs)



Fast Solver

⇒ GNN-based Simulator

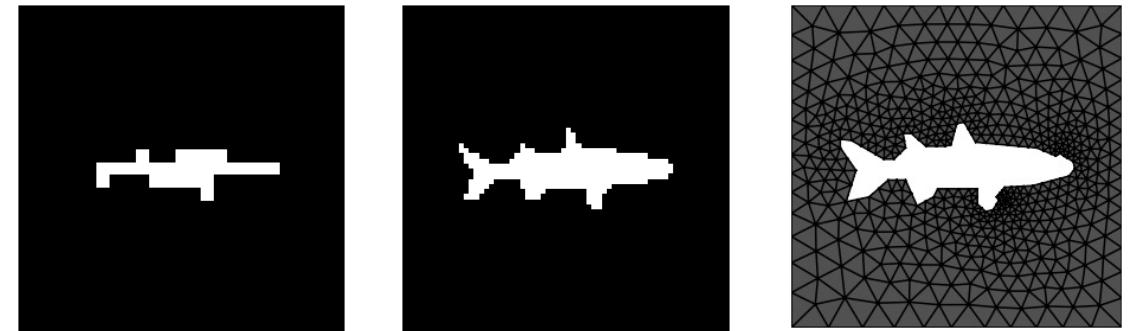
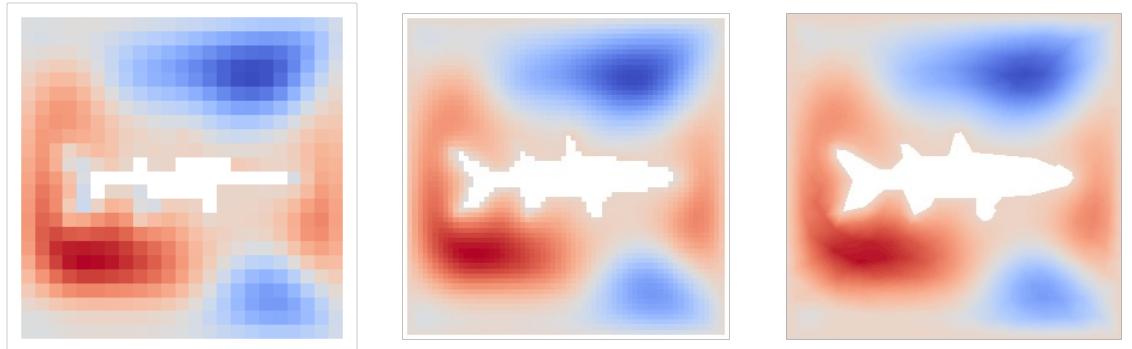
- Fast
 - Learn larger timesteps
 - Learn on coarse meshes



Priors

⇒ Generative Prior

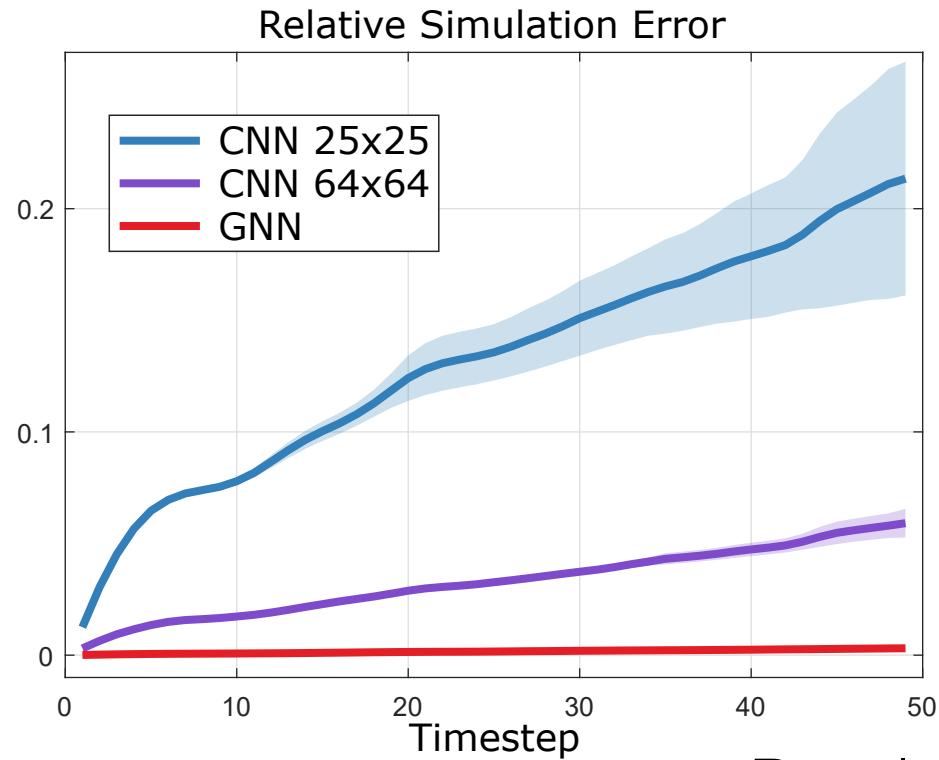
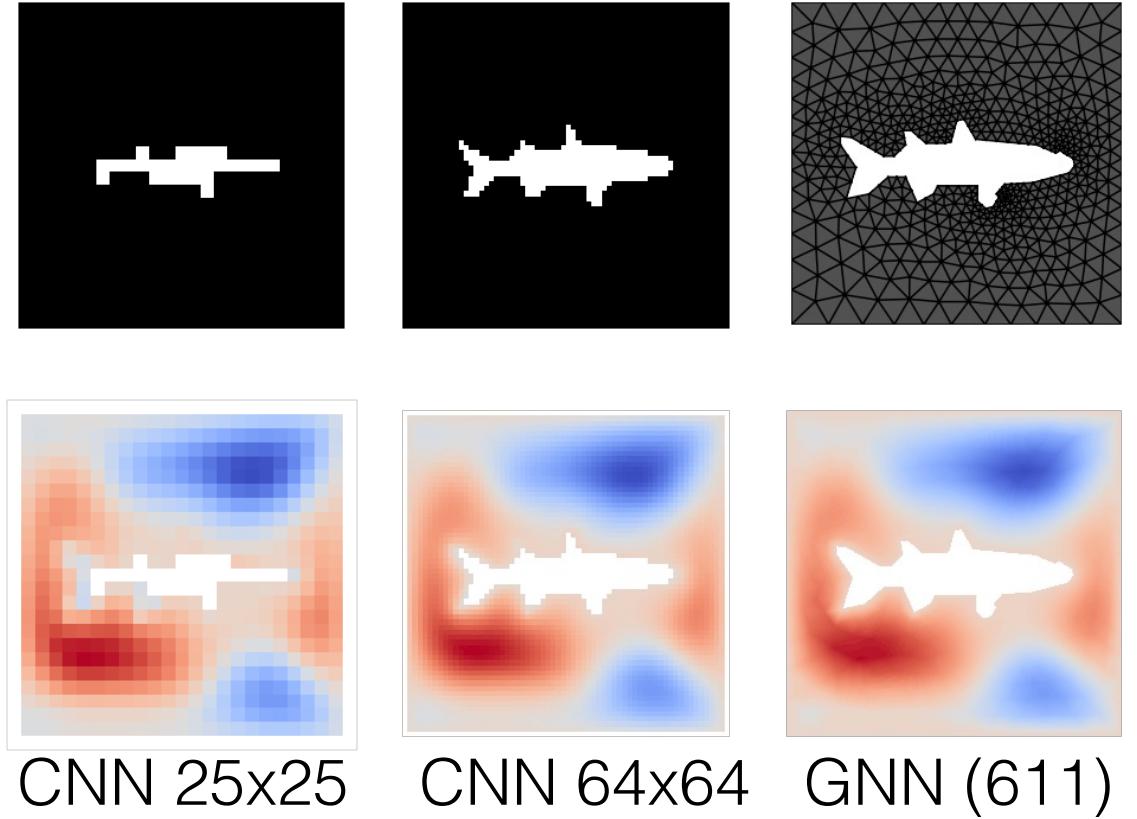
GNN based simulator VS CNN based simulator



Resolution: CNN 25x25 CNN 64x64 GNN (611)

GNN operates on irregular meshes – which is a more efficient representation

GNN based simulator VS CNN based simulator



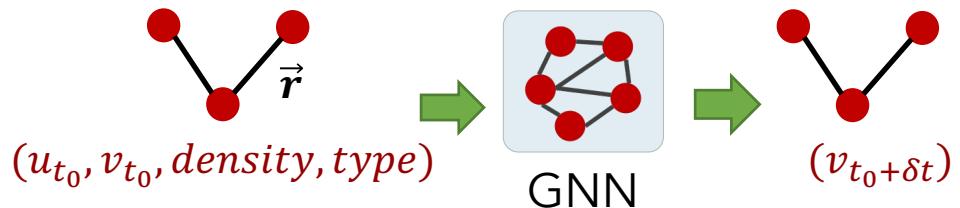
GNN operates on irregular meshes – which is a more efficient representation

GNN has better long-term accuracy

Fast Solver

⇒ GNN-based Simulator

- Faster
- More accurate compared to other learned simulators
- Better scaling due to adaptive resolution



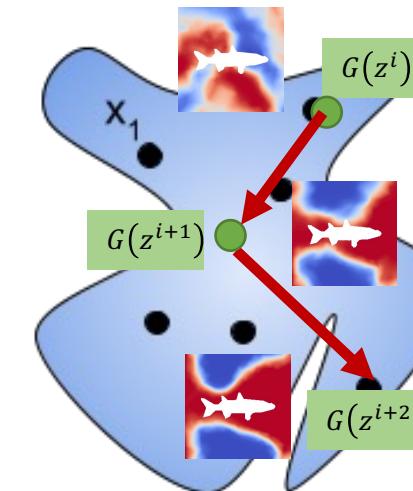
Priors

⇒ Generative Prior

Priors

⇒ Generative Prior

- we constrained the solution space to the manifold learned by G , and avoid bad local optima lie far outside the dataset distribution



Dataset distribution

Priors

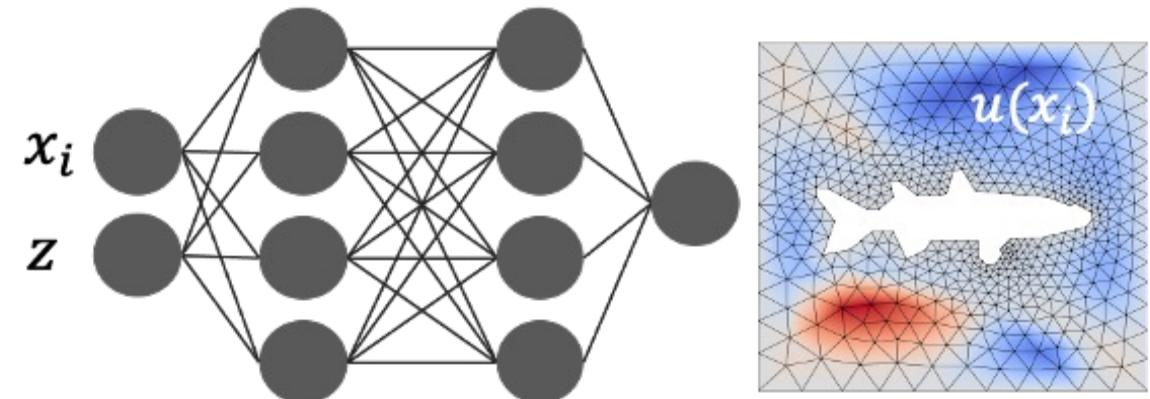
⇒ Generative Prior

- we constrained the solution space to the manifold learned by G , and avoid bad local optima lie far outside the dataset distribution

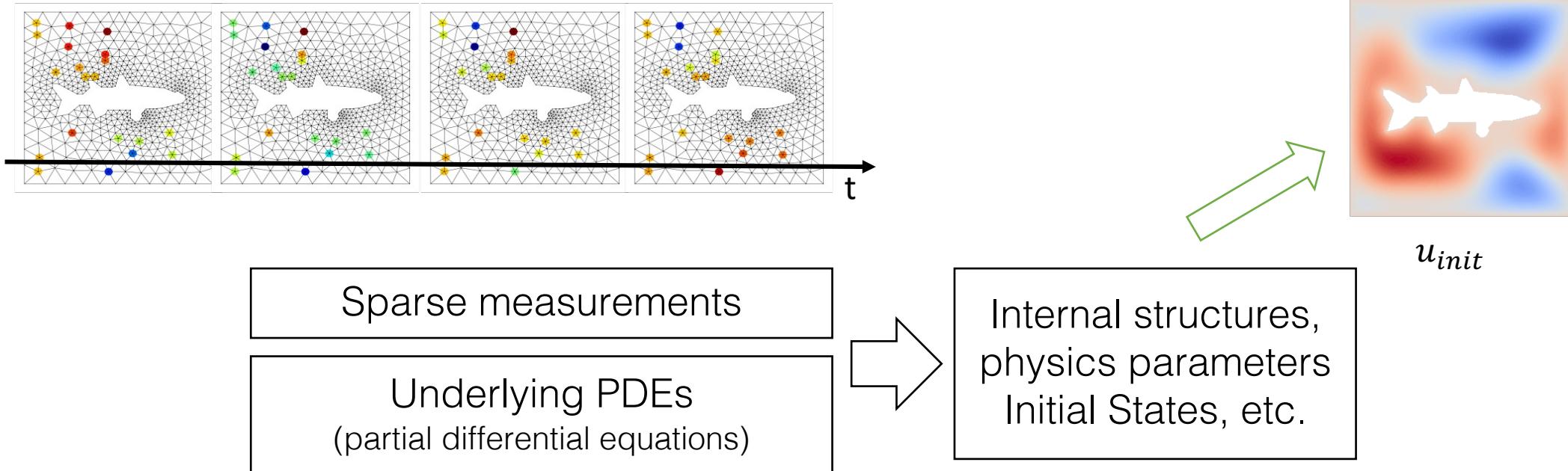
Dataset distribution

Coordinate Network

- Map points x_i and latent z to the field value at that point.
- Independent of meshes



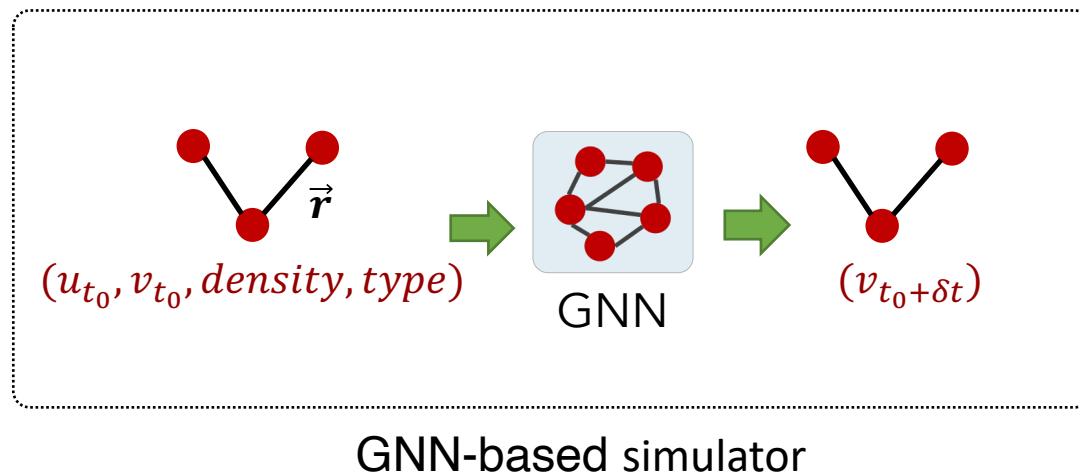
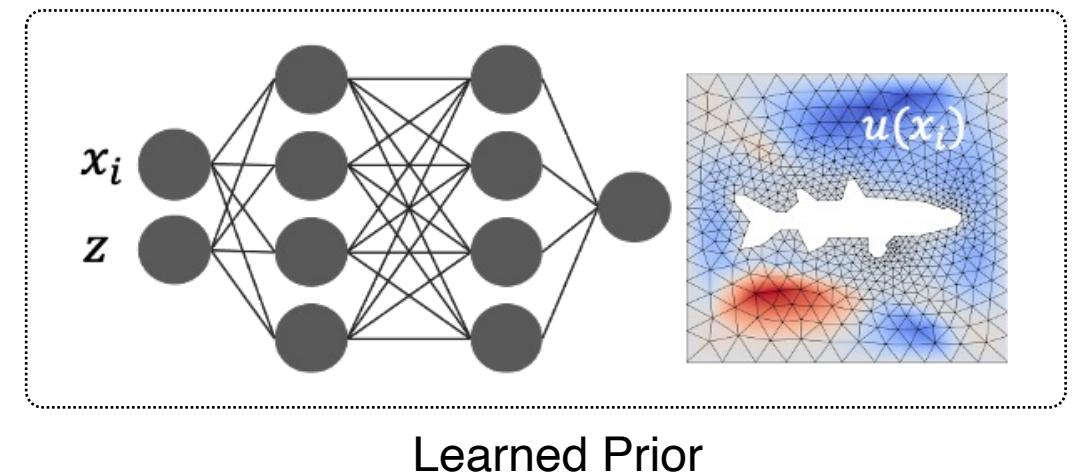
Inverse problem setup



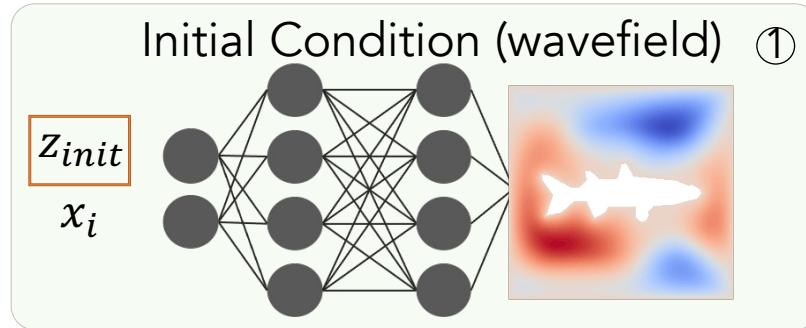
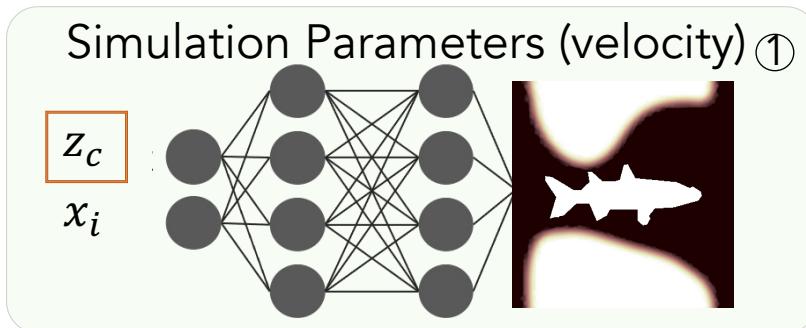
$$\frac{\partial^2 u}{\partial t^2} - c(x)^2 \frac{\partial^2 u}{\partial x^2} = 0, \quad u_0 = \boxed{u_{init}}, \quad u'_0 = \frac{\partial u}{\partial t} \Big|_{t=0} = 0.$$

Pipeline

- Pretrain GNN-based simulator and Learned Prior



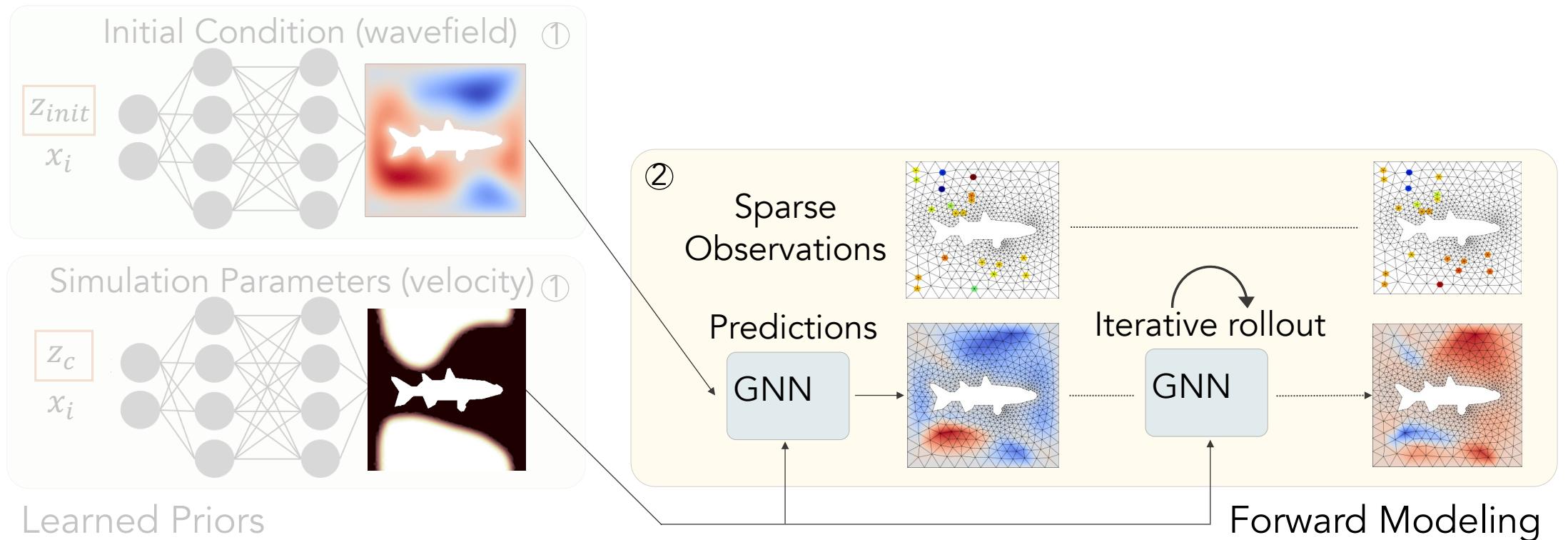
Pipeline



Learned Priors

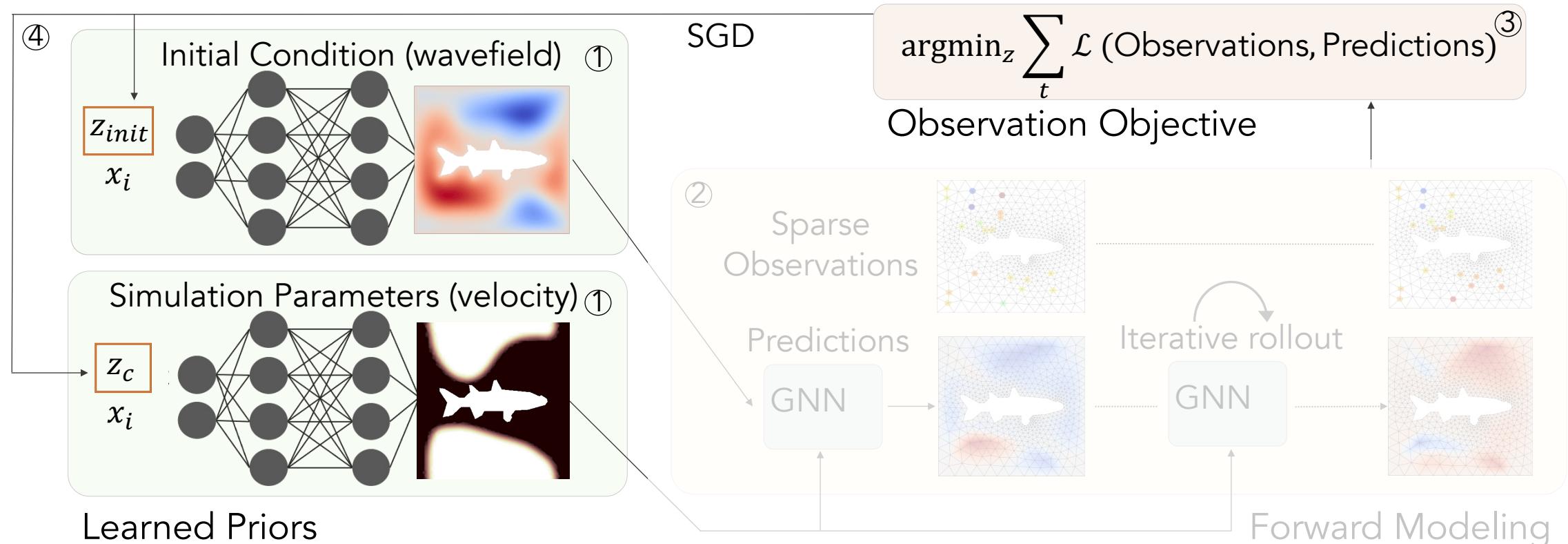
Given current estimated z , we use learned prior to decode it to physics parameters

Pipeline



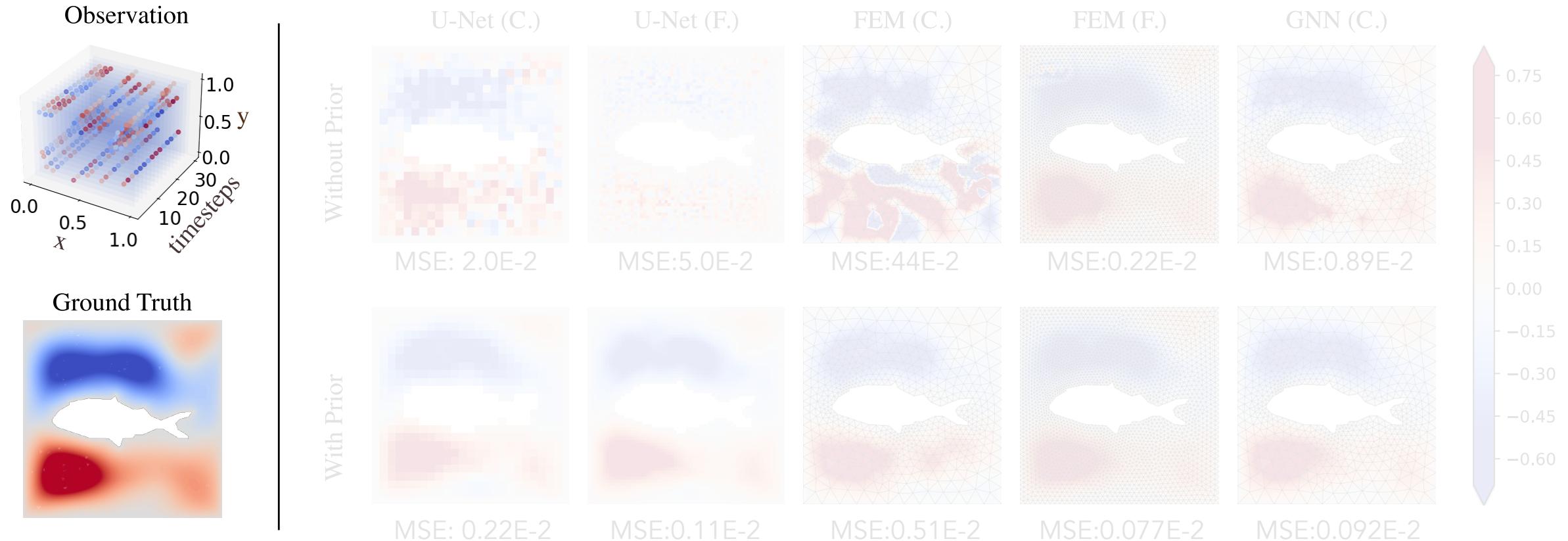
Decoded parameters pass to the GNN for forward modeling to obtain predicted dynamics

Pipeline



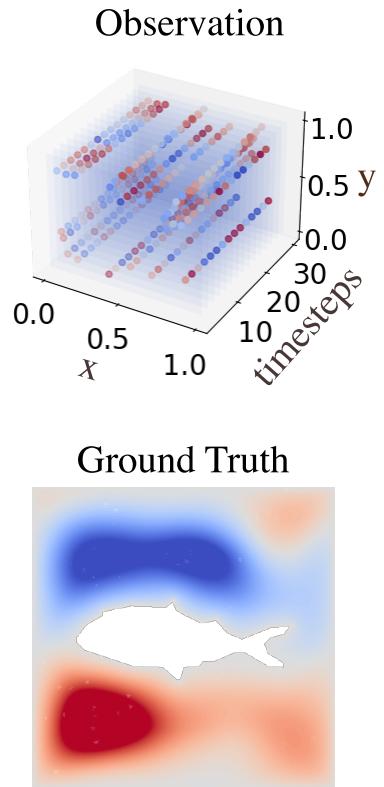
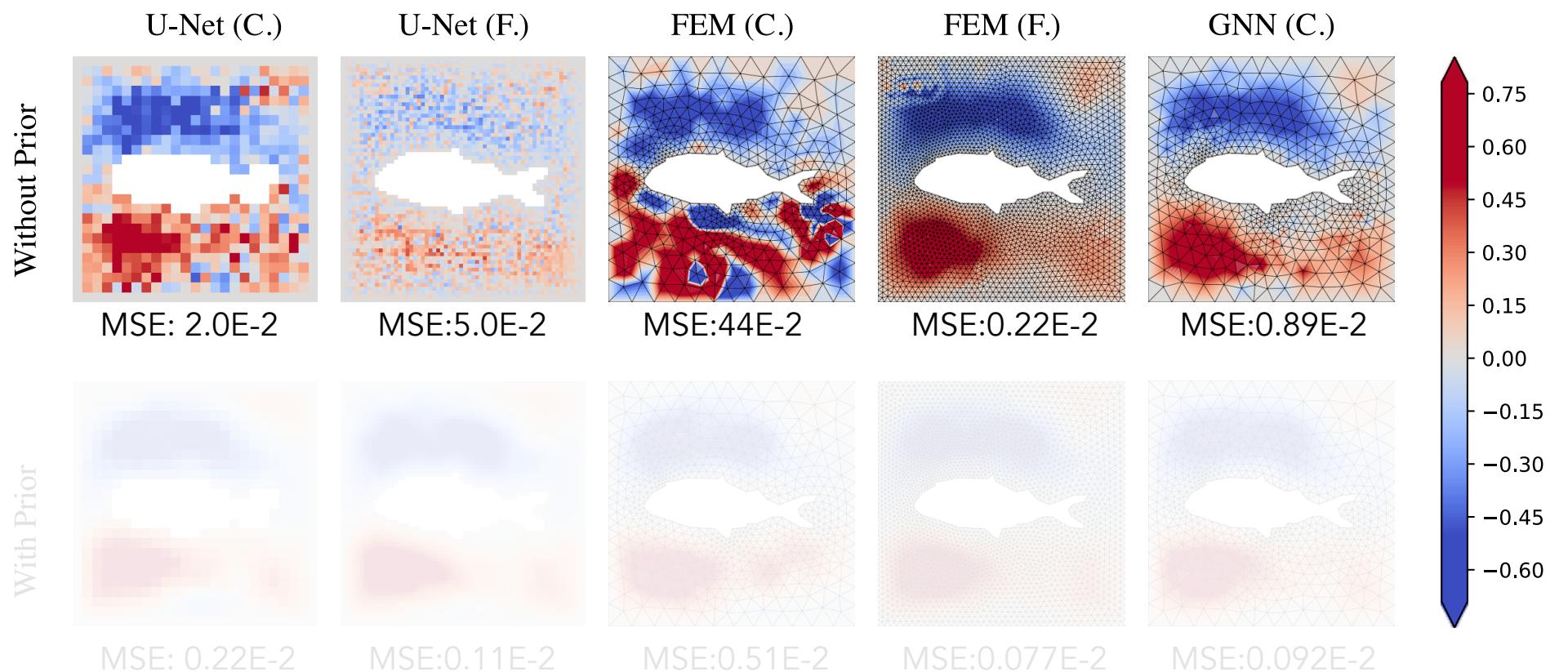
Latent code z_{init} and z_c is optimized to minimize the observation objective

Results

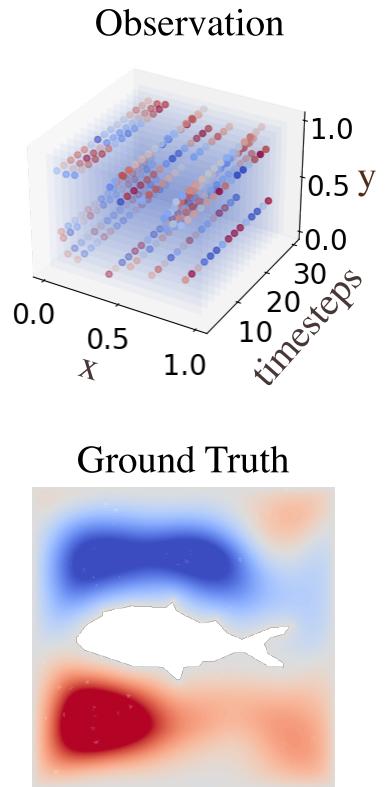
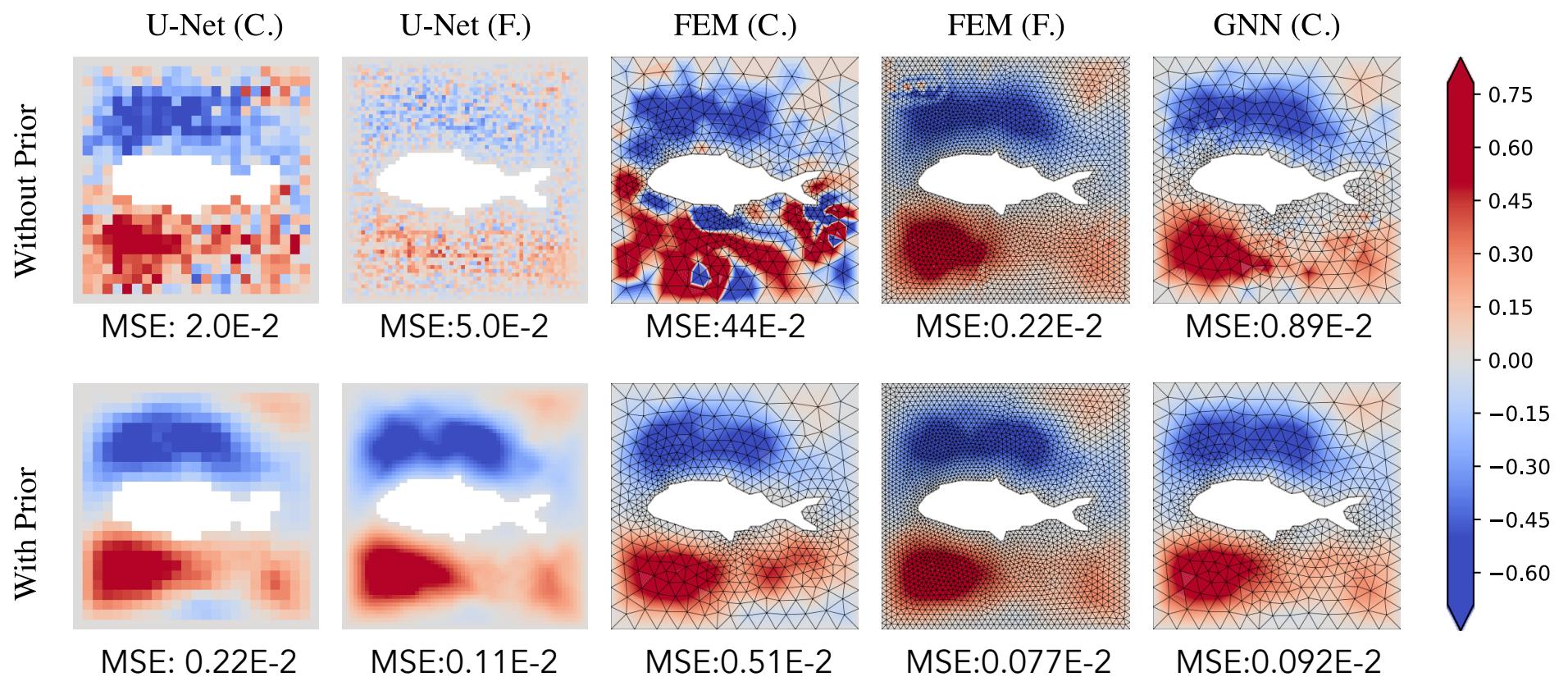


Inverse Problem:

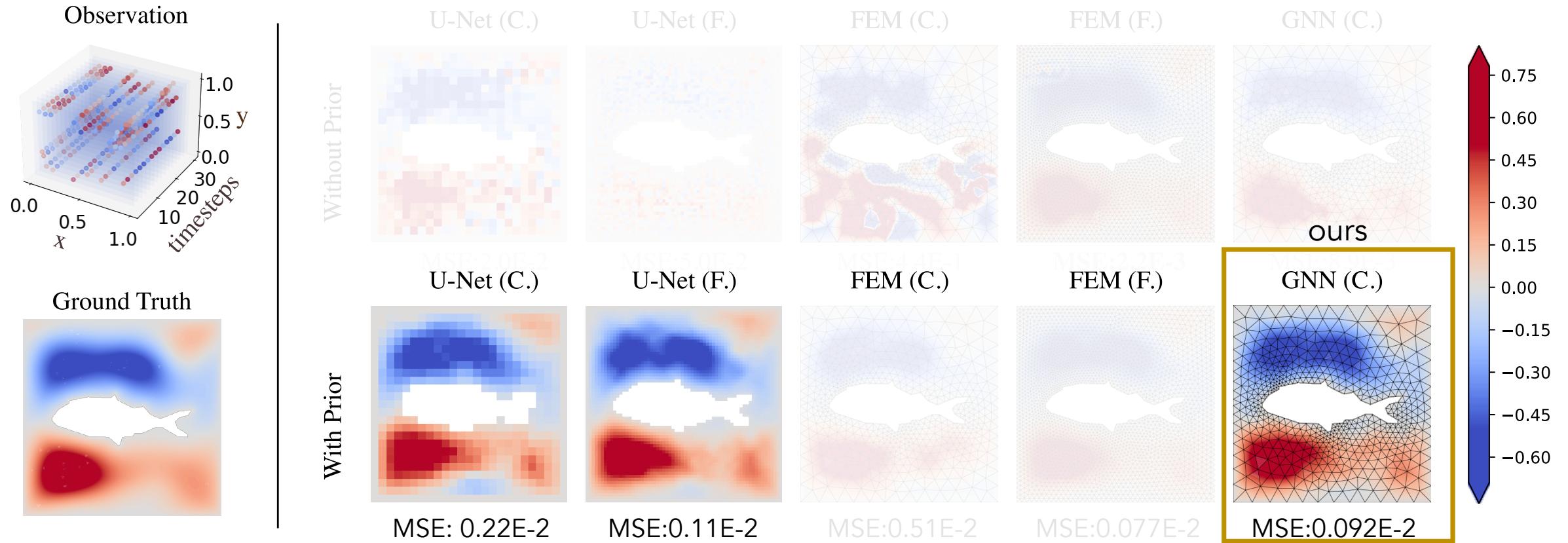
Given sparse observations $u_t(x)$, where $x \in \{\text{sensor locations}\}$ $\text{time} \in \{0, 2\delta t, \dots, 30 \delta t\}$,
 we want to infer the field $u_{t=0}$



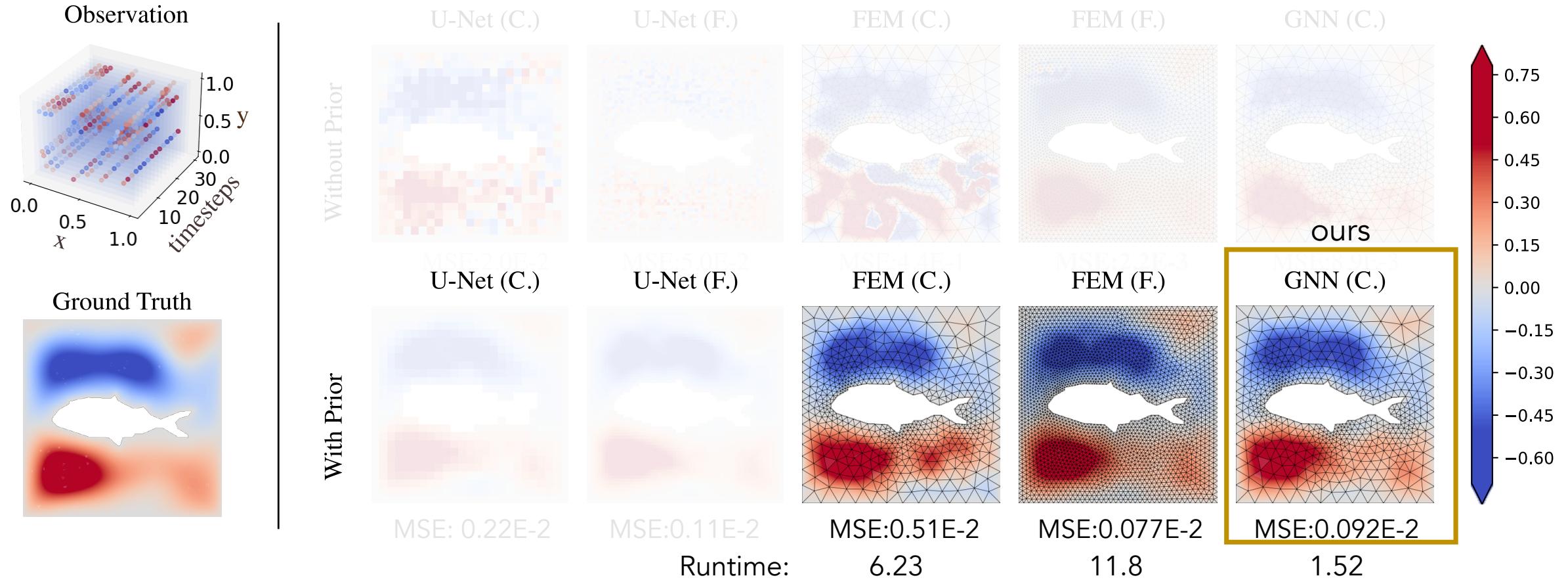
- With prior significantly out-perform without-prior cases



- With prior significantly out-perform without-prior cases

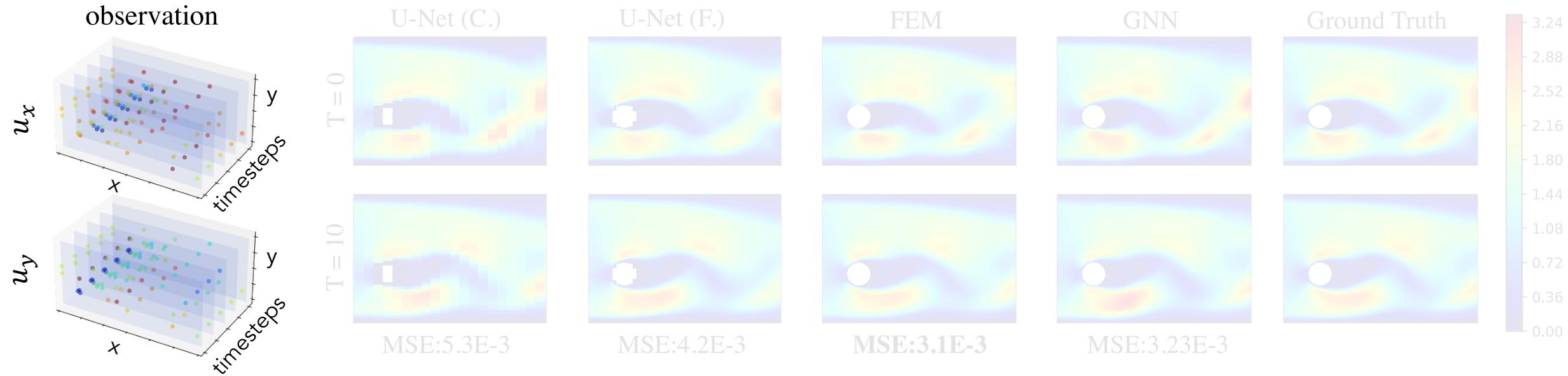


- With prior significantly out-perform without-prior cases
- GNN outperform other learning-based method (CNN)



- With prior significantly out-perform without-prior cases
- GNN outperform other learning-based method (CNN)
- GNN outperform Classical Solver at coarse resolution;
- GNN is slightly less accurate than Classical Solver at fine resolution but is $\sim 8x$ faster

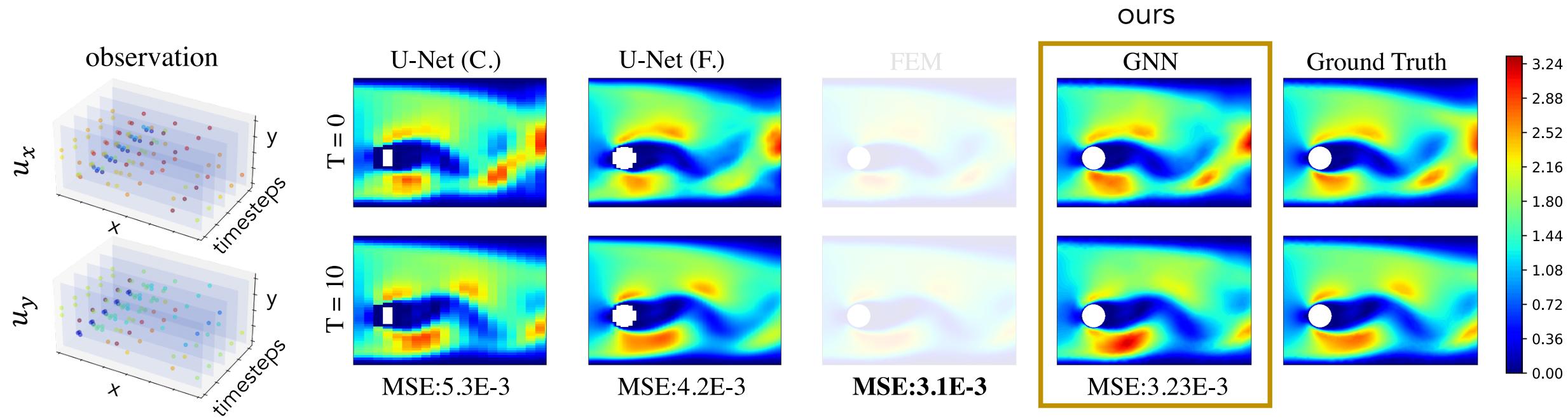
Results – Flow Assimilation



Inverse Problem:

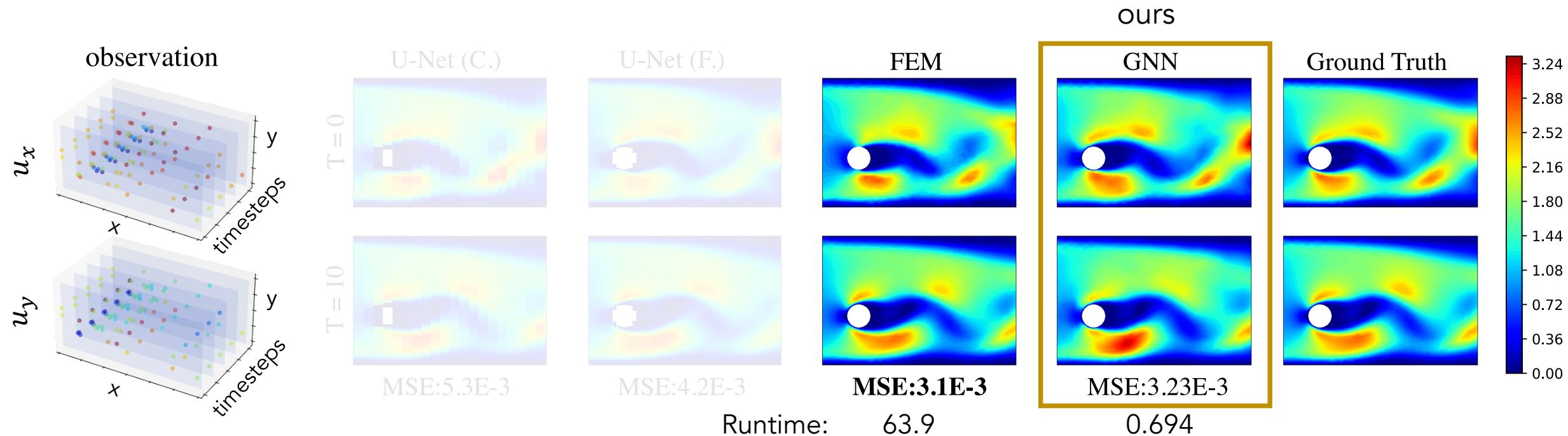
Given sparse observations $\mathbf{u}_t(\mathbf{x})$, where $\mathbf{x} \in \{\text{sensor locations}\}$ time $\in \{0, 2\delta t, \dots, 30 \delta t\}$, we want to infer the field everywhere

Results – Flow Assimilation



- GNN outperform other learning-based method (CNN)

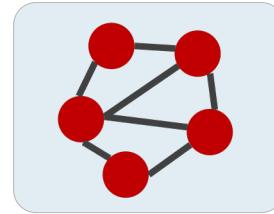
Results – Flow Assimilation



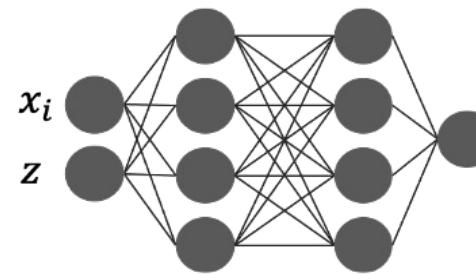
- GNN outperform other learning-based method (CNN)
- GNN is slightly less accurate than Classical Solver at fine resolution but is ~ 90 x faster

Summary

- We develop a new physics-based graph neural network incorporating generative model for solving physics constrained inverse problem faster and more accurate



GNN based solver + Learned Prior



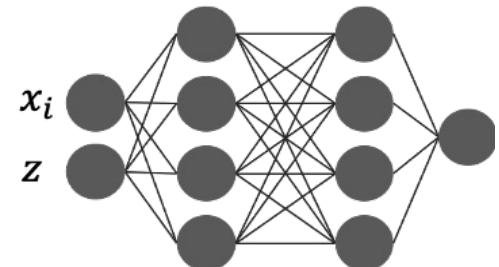
Summary

- We develop a new physics-based graph neural network incorporating generative model for solving physics constrained inverse problem **faster** and **more accurate**

- Limitation/Future research direction
 - memory requirement due to unrolling
 - gradient checkpoints
 - generalizing learned physics solvers across problem settings



GNN based solver



+ Learned Prior

- Checkout our paper and project page for more!
<https://cyanzhao42.github.io/LearnInverseProblem>

