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PDE-constrained Inverse Problem

« Goal: Inferring knowledge from observation data by leveraging
simulation and mathematical models (PDESs)

Sparse measurements

Underlying PDEs

(partial differential equations)

)

Seismic Imaging Navier-Stokes

Internal structures,
physics parameters
Initial States, etc.

Electrical impedance tomography
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Fast Solver

—> GNN-based Simulator

+ Fast
* Learn larger timesteps
« Learn on coarse meshes

e »@»v

(Ut,, Ve, density, type) (Ve +6t)

LEARNING MESH-BASED SIMULATION WITH GRAPH NETWORKS, Tobias Pfaff et. al, 2021



GNN based simulator VS CNN based simulator
. .
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Resolution: CNN 25x25 CNN 64x64 GNN (611)

GNN operates on irregular meshes — which is a more efficient representation



GNN based simulator VS CNN based simulator
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GNN operates on irregular meshes — which is a more efficient representation

GNN has better long-term accuracy



Fast Solver

—> GNN-based Simulator

 Faster

« More accurate compared to other
learned simulators

» Better scaling due to adaptive
resolution
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Priors

—> (Generative Prior

« we constrained the solution space
to the manifold learned by G, and
avoid bad local optima lie far
outside the dataset distribution
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Priors

—> (Generative Prior

Coordinate Network

« Map points x; and latent zto the ~ Xi
field value at that point.

* Independent of meshes
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Inverse problem setup

Uinit
Sparse measurements Internal structures,
_ > | physics parameters
Underlying PDEs Initial States, etc.
(partial differential equations)
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Pipeline

* Pretrain GNN-based simulator and Learned Prior
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GNN
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GNN-based simulator

Learned Prior



Pipeline

Initial Condition (wavefield) @

Learned Priors

Given current estimated z, we use learned prior to decode it to physics parameters I )



Pipeline

-
@
Sparse
Observations
Predictions - Iterative rollout
GNN  — & e GNN .

Forward Modeling

Decoded parameters pass to the GNN for forward modeling to obtain predicted dynami_ 9



Pipeline

SGD argmin, Z L (Observations, Predictions)@
t

Observation Objective

Learned Priors

Latent code z;,;; and z. is optimized to minimize the observation objective



Results



Observation

Ground Truth

Inverse Problem:
Given sparse observations u¢(x), where x € {sensor locations} timee {0,26t,--- 30 &t},
we want to infer the field u.—q



Observation U-Net (C.) U-Net (F.) FEM (C.) FEM (F.) GNN (C.)
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Observation
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Observation
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Observation

0.75
0.60
0.45
0.30
ours L 0.15
U-Net (C.) U-Net (F.) FEM (C.) FEM (F.) GNN (C)) L 0.00
Ground Truth S
=K - —0.15
5
5
= i : -0.30
2 s
A & ~0.45
= E’ g 5 0.60
g > DLTAY, JA"A#A" —V.
R (TN
SRRRRECAR AN
MSE:0.077E-2 MSE:0.092E-2

Runtime: 11.8 1.52

- GNN outperform Classical Solver at coarse resolution;
- GNN is slightly less accurate than Classical Solver at fine resolution [/
but is ~8x faster N




Results — Flow Assimilation

observation

Inverse Problem:
Given sparse observations u;(x), where x € {sensor locations} timee {0,26t,--- 30 6t},
we want to infer the field everywhere



Results — Flow Assimilation
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Results — Flow Assimilation

ours
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- GNN is slightly less accurate than Classical Solver at fine resolution
but is ~90x faster



Summary

- We develop a new physics-based graph neural network
incorporating generative model for solving physics constrained
inverse problem faster and more accurate

GNN based solver + Learned Prior



Summary

- We develop a new physics-based graph neural network
incorporating generative model for solving physics constrained
inverse problem faster and more accurate

- Limitation/Future research direction
- memory requirement due to unrolling
- gradient checkpoints
- generalizing learned physics solvers GNN based solver + Learned Prior

across problem settings

- Checkout our paper and project page for more!
https://cyanzhao4?2.github.io/LearnlnverseProblem




