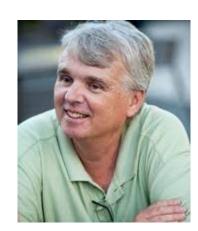
End-to-End Balancing for Causal Continuous Treatment-Effect Estimation

ICML 2022

Taha Bahadori

Eric Tchetgen Tchetgen

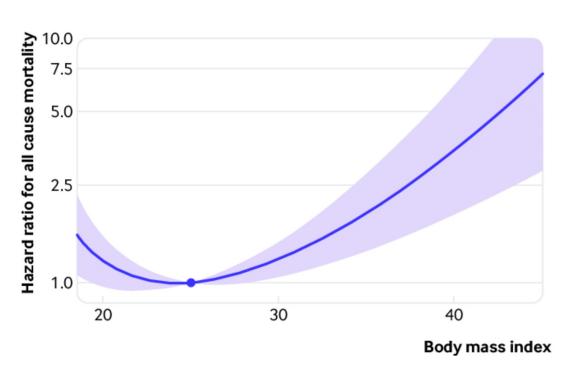
Amazon



David Heckerman

Causal Continuous Treatment-Effect Estimation

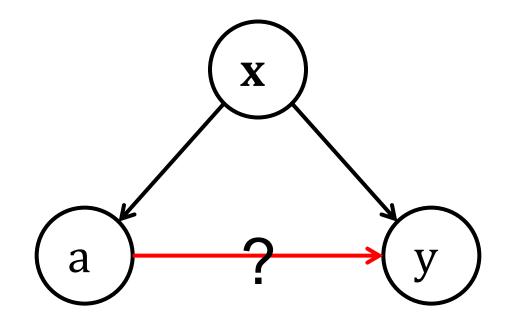
- More challenging than the binary treatment case
 - Uncountably many potential outcomes
 - Only few of them are observed
- Less studied than the binary treatment setting



Sun, Yi-Qian, et al. "Body mass index and all cause mortality in HUNT and UK Biobank studies: linear and non-linear mendelian randomisation analyses." *bmj* 364 (2019).

Problem Setup

- **Data**: Treatments (a), Outcomes (y), and Observed confounders (x).
- Assumptions: Ignorability, Positivity, and Consistency.
- Common techniques:
 - Outcome regression
 - Weighting approaches
 - Doubly robust combination



Weight Instability and Entropy Balancing

Extreme Weights Problem

- ➤ Under severe confounding
- > Extreme propensity scores
- ➤ Unstable causal inference

• Kang, J. D., & Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical science.

Entropy Balancing

 $\min_{\mathbf{w}} -H(\mathbf{w})$ s.t.Covariate Balance

• Hainmueller, J. (2012). Entropy balancing for causal effects: A multivariate reweighting method to produce balanced samples in observational studies. *Political analysis*.

Learning the Base Weights

$$\min_{w} \sum_{i=1}^{n} w_i \log \frac{w_i}{q_i}$$

Subject to:

$$\sum_{i=1}^{n} w_i (\mathbf{x}_i - \overline{\mathbf{x}}) (a_i - \overline{a}) = \mathbf{0},$$

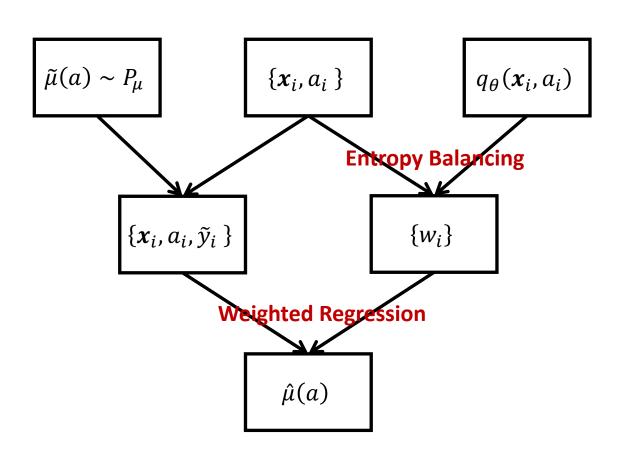
$$\sum_{i=1}^{n} w_i = n,$$

$$w_i > 0$$

- Choice of the base weights (q_i) ?
- Proper choice of base weights:
 - 1. A way to regularize the weights.
 - Improve the quality of weighted causal regression.
 - 3. Embed our prior belief about the shape of the response function.

End-to-End Learning for the Base Weights

- Base-weights $q_{\theta}(x_i, a_i)$ modeled by a neural network
- Generate pseudo-datasets using random response functions $\tilde{\mu}(a)$.
- Train q_{θ} to minimize estimation error of $\tilde{\mu}(a)$ by $\hat{\mu}(a)$.
- End-to-end learning: Learn base weights to <u>directly</u> increase causal inference accuracy.



Theoretical Guarantees

Unbiasedness

• Regardless of the choice of the base weights, the weights are unbiased estimators of the stable weights: $w(x, a) = \frac{f(a)}{f(a|x)}$.

Asymptotic normality

$$\sqrt{n} \left(\widehat{w}_n(a_i, \boldsymbol{x}_i) - w^{\star}(a_i, \boldsymbol{x}_i) \right) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2(a_i, \boldsymbol{x}_i))$$

Synthetic Experiments

Two datasets:

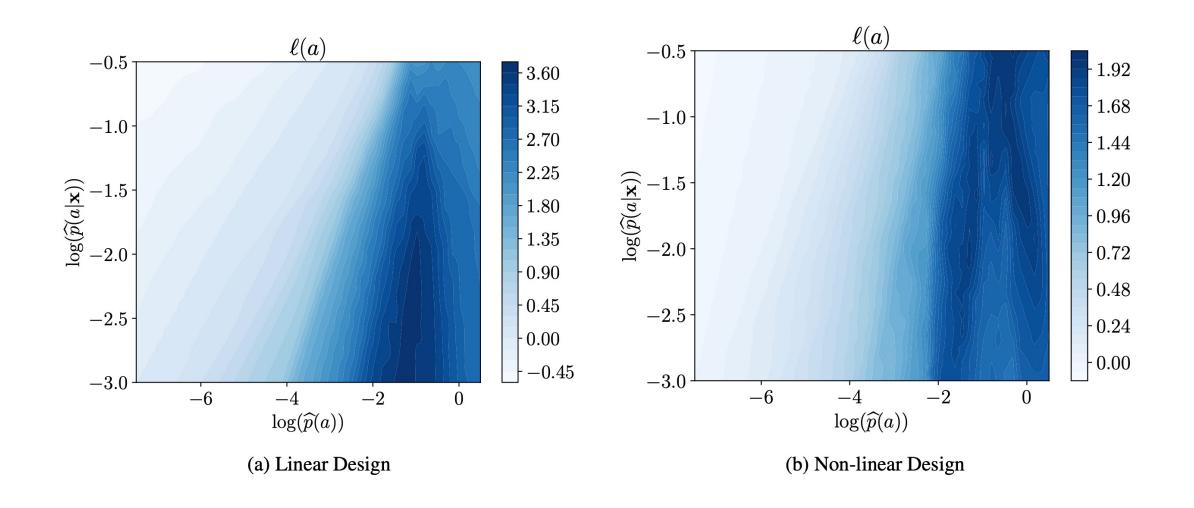
- Linear response curve
- Non-linear response curve modeled with Polynomials of degree 3.

Run the analysis 100 times, report the mean and SE of estimating the polynomial coefficients.

Algorithm	Linear	Non-linear
Inverse Propensity Weighting (SW)	2.057 (0.437)	$0.530\ (0.025)$
Permutation Weighting	1.1543 (6.580)	$0.525\ (0.250)$
Entropy Balancing (Const.)	$0.880\ (0.072)$	$0.335\ (0.022)$
Entropy Balancing (SW)	$0.652\ (0.059)$	$0.403\ (0.025)$
End-to-End Balancing	$oxed{0.383\ (0.035)}$	$0.276\ (0.014)$

Average RMSE for estimation of the response functions.

Learned Base Weight Functions



Thank you!

