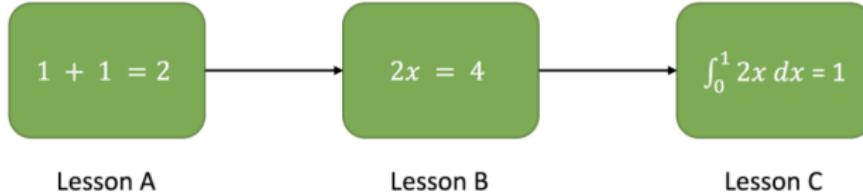


On the Statistical Benefits of Curriculum Learning

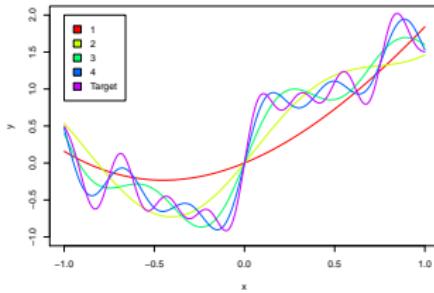
Ziping Xu, Ambuj Tewari


University of Michigan, Statistics

July 10, 2022

Background

Motivations:


- 1 Multi-task learning can improve learning efficiency.
- 2 In some problems, we can decide the *order* of learning and the *number of observations* from each task.
- 3 Curriculum learning (CL) refers to any strategy that improves the performance with a better task scheduling [1].
- 4 The idea rooted deeply in the way human learns.

Two Benefits

There has been two understandings on the benefits of CL:

- 1 Optimization benefits: solutions for previous tasks serve as better initial points for later tasks that are highly nonconvex globally but convex locally.

- 2 Statistical benefits: any benefits except for the reduction in the optimization difficulties.
Example: three identical linear regression tasks except for the different noise levels.

Problem Setup

We studied two setups for multitask linear regression tasks:

- 1 Unstructured linear regression: T linear regression tasks with a single target task.
No structural information assumed.

$$Y_t = X_t^T \theta_t^* + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \sigma_t^2), \quad X_t \sim \mathcal{N}(0, \Sigma^2).$$

- 2 Structured linear regression: T linear regression tasks sharing the same low dimensional representation function.

$$Y_t = X_t^T B^* \theta_t^* + \epsilon_t, \quad \text{where } B \text{ is the shared linear representation.}$$

Results Overview (Informal)

Unstructured linear regression:

- 1 The optimal selects the task that minimizes

$$\|\theta_t^* - \theta_{target}^*\|_2^2 + \frac{d\sigma_t^2}{N}.$$

Transfer distance

- 2 For task schedulers that adaptively learns to schedule one can achieve a MSE rate of

$$\frac{\sigma_T^2 \log(T)}{N} + \min_t \left\{ \|\theta_t^* - \theta_{target}^*\|_2^2 + \frac{d\sigma_t^2}{N} \right\}$$

Extra error to identify good tasks

Structured linear regression:

- 1 Optimal curriculum schedules tasks such that the matrix does not degenerate

$$M = \sum_{i=1}^N \theta_{t_i}^* \theta_{t_i}^{*T}, \text{ where } t_i \text{ is the task scheduled at step } i.$$

- 2 Adaptive learnt curriculum can be as well as the optimal curriculum.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in **Proceedings of the 26th annual international conference on machine learning**, 2009, pp. 41–48.