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e Model Churn: models trained with different random seeds
have different performance [Hen+18|.

e Certificates: final models have few guarantees.

Our Contribution: robust training by convex reformulations.
e We develop new convex reformulations of two-layer neural
networks with gated ReLU activations.

e We show how to approximate the RelLU training problem by
unconstrained convex optimization of a Gated ReLU network.

e We propose and exhaustively evaluate algorithms for solving
our convex reformulations.
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Gated RelLU Networks
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Gated RelLU Networks

P p
C-ReLU s min| 3y D;X (v = w;) = yllf + A lvjlla + llwill,
j=1 j=1

s.t. vj,w; € Kjforj=1,...,p.

P P
C-GRelLU : ml}nH ZDquj —yll5+ )\Z [l ll2,
j=1 Jj=1

Prop. (informal): C-GReLU is equivalent to a “gated ReLU”
network [FMS19] with activation function
04(X, u) = diag(1(Xg > 0)) Xu.
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e That is, when does K; — K; span R9?
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Informal Result: C; — C; = R? or Kj is “unimportant”.
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Main Approximation Result

We can decompose a Gated ReLU neuron into two RelLU neurons.

7/11



Main Approximation Result

We can decompose a Gated ReLU neuron into two RelLU neurons.

Theorem (Approximation by Cone Decomposition)

Let A > 0 and let p* be the optimal value of the ReLU problem.
There exists a C-GReLU problem with minimizer u* and optimal
value d* satisfying,

d* <p* <d +206(Xy) Y fufll2.
D,‘Gf)

7/1 1



Main Approximation Result

We can decompose a Gated ReLU neuron into two RelLU neurons.

Theorem (Approximation by Cone Decomposition)

Let A > 0 and let p* be the optimal value of the ReLU problem.
There exists a C-GReLU problem with minimizer u* and optimal
value d* satisfying,

d* <p* <d +206(Xy) Y fufll2.

D, Gf)

Additional Consequences
e The approximation is exact for unregularized models!

e The Gated ReLU and ReLU models are formally equivalent!
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Solving the Convex Programs

/ e~
C-GReLU DC°”e C-RelLU
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We develop two algorithms for solving the convex reformulations:
e R-FISTA: a restarted FISTA variant for Gated RelLU.

e AL: an augmented Lagrangian method for the (constrained)
RelLU Problem.

Our work exhaustively evaluates the performance of R-FISTA and
AL.
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Numerical Results

Gated RelU Activations RelLU Activations
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Prop. of Problems Solved
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=W— R-FISTA (Ours)  =#= Adam == SGD  =@= MOSEK == AL (Ours)

e Generated by 438 training problems taken from UCI repo.
e R-FISTA/AL solve more, faster, than SGD and Adam.
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Thanks for Listening!
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