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Overview

Problem: Training shallow neural networks is challenging.

• Tuning: step-size and other hyper-parameters must be tuned.

• Model Churn: models trained with different random seeds
have different performance [Hen+18].

• Certificates: final models have few guarantees.

Our Contribution: robust training by convex reformulations.

• We develop new convex reformulations of two-layer neural
networks with gated ReLU activations.

• We show how to approximate the ReLU training problem by
unconstrained convex optimization of a Gated ReLU network.

• We propose and exhaustively evaluate algorithms for solving
our convex reformulations.
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Background on Convex Reformulations

Non-Convex Problem

min
W
‖

m∑
j=1

(XW1j)+w2j − y‖22

+ λ

m∑
j=1

‖W1j‖22 + ‖w2j‖2
X

W1j

ŷ

w2j

Convex Reformulation [PE20]

min
v,w
‖

p∑
j=1

DjX(vj − wj)− y‖22

+ λ

p∑
j=1

‖vj‖2 + ‖wj‖2,

s.t. vj , wj ∈ Kj for j = 1, . . . , p.
X

X

X
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Gated ReLU Networks

C-ReLU : min
v,w
‖

p∑
j=1

DjX(vj − wj)− y‖22 + λ

p∑
j=1

‖vj‖2 + ‖wj‖2,

s.t. vj , wj ∈ Kj for j = 1, . . . , p.

C-GReLU : min
u
‖

p∑
j=1

DjXuj − y‖22 + λ

p∑
j=1

‖uj‖2,

Prop. (informal): C-GReLU is equivalent to a “gated ReLU”
network [FMS19] with activation function

φg(X,u) = diag(1(Xg ≥ 0))Xu.
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Gated ReLU: Cone Decompositions

• We reparameterized as uj = vj − wj .

• Given, uj , can we go back to vj − wj?

• That is, when does Kj −Kj span Rd?

uj

vj

wj

Kj

−Kj

Informal Result: Kj −Kj = Rd or Kj is “unimportant”.
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Main Approximation Result

We can decompose a Gated ReLU neuron into two ReLU neurons.

Theorem (Approximation by Cone Decomposition)

Let λ ≥ 0 and let p∗ be the optimal value of the ReLU problem.
There exists a C-GReLU problem with minimizer u∗ and optimal
value d∗ satisfying,

d∗ ≤ p∗ ≤ d∗ + 2λκ(X̃J )
∑
Di∈D̃

‖u∗i ‖2.

Additional Consequences

• The approximation is exact for unregularized models!

• The Gated ReLU and ReLU models are formally equivalent!
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Solving the Convex Programs

NC-GReLU NC-ReLU

C-GReLU C-ReLU

Sol. Map Sol. Map

Cone
Decomp.

We develop two algorithms for solving the convex reformulations:

• R-FISTA: a restarted FISTA variant for Gated ReLU.

• AL: an augmented Lagrangian method for the (constrained)
ReLU Problem.

Our work exhaustively evaluates the performance of R-FISTA and
AL.
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Numerical Results
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• Generated by 438 training problems taken from UCI repo.

• R-FISTA/AL solve more, faster, than SGD and Adam.
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Thanks for Listening!
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