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In A Nutshell e

Preconditioning can be exploited for highly efficient log-determinant estimation and in turn GP hyperparameter optimization

Goal: Large-scale Gaussian process hyperparameter optimization.

Known: Can be reduced to matrix-vector multiplication. s
Problem: Stochastic trace estimates of log det(K) and its gradient.

+ Require many random vectors to converge. — slows down training
+ Introduce stochasticity into optimization. o A

J A

Our work: Precondition stochastic trace estimators.
+ Preconditioning can be used to reduce variance - i.e. accelerate convergence.
+ Theoretical guarantees for all approximations.
+ Practical preconditioner choices for given kernels.
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+ Up to twelvefold training speedup.
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Large-scale GP Hyperparameter Optimization LREGIT b

A numerical linear ¢ ottleneck

Need to: Evaluate log-marginal likelihood and its derivative repeatedly.

A

Challenge: Computationally costly operations with the kernel matrix. K
+ linear solves v — K~ 1o
+ matrix traces log det (K) = tr(log(K)) and tr(Ii'*l gg‘)
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This is great because . ..
+ matrix-vector multiplies have complexity O (n?).

+ structured or sparse matrices are efficient to multiply with. . .
lower time and space complexity

+

the kernel matrix does not need to be stored in memory explicitly [9].
+ we can exploit parallelization and modern hardware (GPUs) [5].
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Preconditioning UTUBINGE

How to encode and leverage structural prior kr dge about matrices.

Preconditioner

P~K
such that (P~ ' K) < x(K) and P is computationally tractable.

+ Computing and storing P is cheap.
+ Linear solves v — P~ are efficient.
+ Derived properties, such as the determinant or spectrum are known.

Asymptotic approx. error g(¢) — 0 of sequence of preconditioners P, > K:

R(PK) < (1+0(g(0)| Kl )?

Known Use: Accelerate and stabilize linear solves via CG = bias reduction
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Stochastic Trace Estimation VNI IER ST AT
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Computing matrix traces tr( f(K)) via matr ctor multiplication [4, 10, 11].
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Problems:

+ Worst-case convergence in the number of random vectors is O(¢~2)

= slows down training
+ Introduces stochasticity into hyperparameter optimization
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Preconditioned Log-Determinant Estimation YR
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Variance-reduced stochastic trace estimation via preconditioning.
Idea: Decompose log-determinant into deterministic and stochastic approximation.
log det(K) = log det (ﬁ’gﬁ[lﬁ') = log det(Py) + tr(log(K) — log(Py))

known = stochastic trace estimate

The better the preconditioner, the smaller the stochastic approximation = variance reduction

== logdet(K) —_— TEI;HQ (log K)

log det(P) + TZSI;,ZQ(log P-1K)

+ Backward pass analogously via
automatic differentiation.

+ If we compute a preconditioner for
CG, we can simply reuse it at
negligible overhead.

+ If P, — K atrate g(¢), then the
STE only requires (’)(é‘%g(f))

100 10t 102 103 104 random vectors.
Number of random vectors /£

log-determinant
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Convergence Rates for Kernel — Preconditioner Combinations Il e

The faster the preconditioner ¢ es to the kernel matrix (i.e. g(¢) — 0) the fewe re needed

If P, — K atrate g(¢), then the STE only requires O(¢~ 2 g(¢)) random vectors.

Kernel d  Preconditioner g() Condition

any N  none 1

any N  RFF 2 w/ high probability

RBF 1 partial Cholesky exp(—cl) for somec > 0

RBF N QFF exp(—bla)  forsomeb > 0if @ > 2y~2
Matérn(v) N partial Cholesky ¢~CE ) 2y € Nand maximin ordering
Matérn(v) 1 QFF L=+ where s(v) € N

mod. Matérn(v) N QFF e where s(v) € N
additive N any dg(?) all summands have rate g(#)
any N any kernel approx. g() 3 uniform convergence bound
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Theoretical Guarantees U AT

Probabilistic error bounds for the estimates of the log-marginal likelihood and its derivative.

Theorem (Log-marginal likelihood) Theorem (Derivative)
[...] Then with probability 1 — 6, the error in the [...] Then with probability 1 — 6, the error in the
estimate n of the log-marginal likelihood L satisfies estimate ¢ of the derivative of the log-marginal

) . likelihood 2 L satisfies
|7] — £| S ECG 4 5(5Lanczos +5STE) ||10g(K)||F7

¢ — 2L| < ecati(ecar+esTr) K18
where the individual errors are bounded by | | : | o0 HF

where the individual errors are bounded by

VE=1\™
cca(rm) < Ks (\/EH) o eca(r,m) < K. ( H—l)m (4)
vaRgio1) 2™ SR = DA\ VAEE
ELancros (1, ™) < Ka (m‘*l) @ ( )< K (ﬁ_l)m (5
€car\k, M) = Ro | o0y

estr(5,£) < Ciy/log(6- 1)~ 29(0)| (3)

esTe(6,£) < C1/log(@ )¢~ 3g(0)| (6)

We leverage preconditioning not only to reduce bias, but crucially also to reduce variance.



Preconditioning Reduces Bias and Variance
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Experiment Details:
+ Randomly sampled synthetic data (n = 10,000, d = 1)
+ RBF kernel with noise scale 2 = 10~ 2

+ Partial Cholesky preconditioner of size £

+ £random vectors
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Precondltlomng Accelerates Hyperparam

on on UCI data
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(a) Training loss (Protein). (b) Line search computations (Protein). (c) Speedup on UCI datasets.

Experiment Details:
+ UCl datasets (n = 12,449 to n = 326,155)
+ Matém(2) kernel with noise scale o = 1072
+ Partial Cholesky preconditioner of size 500
+ ¢ = 50 random vectors
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Preconditioning for Scalable Gaussian Process Hyperparameter
Optimization

Jonathan Wenger, Geoff Pleiss, Philipp Hennig, John Cunningham and Jacob R. Gardner

+ Preconditioning reduces variance — or equivalently accelerates convergence -
of the stochastic estimates of the log-determinant and its derivatives.

+

Stronger theoretical guarantees for the computation of the log-determinant,
log-marginal likelihood and their derivatives.

+ Specific convergence rates for combinations of kernels and preconditioners.

+

Up to twelvefold speedup when training large-scale GP regression models.

Paper axiv https://arxiv.org/abs/2107.00243

Implementation O https: //github.com/cornellius-gp/gpytorch


https://arxiv.org/abs/2107.00243
https://github.com/cornellius-gp/gpytorch
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