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Motivation

● OOD detection is critical for safe deployment of ML models in real-world settings

● ML models deployed in the wild may naturally encounter large quantities of unlabeled data 
consisting of both ID and OOD examples

● Our work shows that using constrained optimization techniques, this unlabeled “wild” data can 
be used to train a state-of-the-art OOD detector without sacrificing performance on ID 
classification



Problem Setup

● Let       and        be two distributions over 

● Each in-distribution (ID) sample from       belongs to one of K classes

● When training an OOD detection model, we have access to:



Problem Setup

● Let       and        be two distributions over 

● Each in-distribution (ID) sample from       belongs to one of K classes

● When training an OOD detection model, we have access to:

ship horse

bird

truck frog

airplane deer dog

Class-labeled data from 



Problem Setup

● Let       and        be two distributions over 

● Each in-distribution (ID) sample from       belongs to one of K classes

● When training an OOD detection model, we have access to:

ship horse

bird

truck frog

airplane deer dog

Class-labeled data from 

? ?

?

? ?

? ? ?

Unlabeled data from 



Learning Objective



Learning Objective

Minimize the proportion of wild samples declared as ID,
subject to:



Learning Objective

Minimize the proportion of wild samples declared as ID,
subject to:

No more than 1 - α of the ID samples are declared OOD, 
and…



Learning Objective

Minimize the proportion of wild samples declared as ID,
subject to:

No more than 1 - α of the ID samples are declared OOD, 
and…

No more than 1 - τ of the ID samples are given the wrong 
class label.
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Learning Objective

smooth approx.

Energy-based uncertainty score 
(higher for ID samples)

Binary-sigmoid loss: distinguish 
between ID and OOD samples

Cross-entropy loss: correctly classify ID samples
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Augmented Lagrangian Methods (ALM)

● Solve constrained optimization problems of the form:

as a sequence of unconstrained optimization problems.

● Define the classical augmented Lagrangian function:

                                                            ,    where 

● At iteration k, ALM minimizes       w.r.t. θ and then performs the gradient ascent update:

convex

learning rate
penalty parameter (fixed beforehand 
or adapted during training)



Implementing ALM with neural networks

Overview of our training procedure.

I and J are mini-batches of size B sampled 
randomly from the wild and ID data, respectively.

Because ψ is convex in u, the function          is an 
upper bound on       at each epoch (via Jensen’s 
inequality).



Experimental setup

● ID datasets: CIFAR-10 and CIFAR-100

● OOD datasets: SVHN, Textures, Places, LSUN-Crop, LSUN-Resize, and 300K Random Images 
(cleaned subset of 80 Million TinyImages)

● Models are initialized using a WideResNet architecture pre-trained on CIFAR-10/100 and 
trained for 100 epochs

○ Architecture: 40 layers, widen factor = 2, weight decay = 0.0005, momentum = 0.09
○ Optimization: SGD with Nesterov momentum

● Metrics: FPR@95, AUROC, accuracy (on ID classification)
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Conclusion

● We propose a novel framework for OOD detection using unlabeled “wild” data, 
which occurs abundantly in the open world and can be easily collected by deployed 
systems

● Augmented Lagrangian methods for constrained optimization problems can be 
incorporated into the training process of a neural network, achieving state-of-the-art 
OOD detection performance and without sacrificing ID classification accuracy

● This framework may dramatically improve real-world OOD detection, enhancing the 
reliability of deployed ML systems
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