Training OOD Detectors in their Natural Habitats

Julian Katz-Samuels, Julia Nakhleh, Rob Nowak, Yixuan Li

Motivation

- OOD detection is critical for safe deployment of ML models in real-world settings
- ML models deployed in the wild may naturally encounter large quantities of unlabeled data consisting of both ID and OOD examples
- Our work shows that using constrained optimization techniques, this unlabeled "wild" data can be used to train a state-of-the-art OOD detector without sacrificing performance on ID classification

1. Design a classifier

2. Deploy in the wild open world

Leverage wild data to build classifier and OOD detector

Problem Setup

- Let \mathbb{P}_{in} and \mathbb{P}_{out} be two distributions over \mathbb{R}^d
- Each in-distribution (ID) sample from \mathbb{P}_{in} belongs to one of K classes
- When training an OOD detection model, we have access to:

Problem Setup

- Let \mathbb{P}_{in} and \mathbb{P}_{out} be two distributions over \mathbb{R}^d
- Each in-distribution (ID) sample from \mathbb{P}_{in} belongs to one of *K* classes
- When training an OOD detection model, we have access to:

Class-labeled data from \mathbb{P}_{in}

Problem Setup

- Let \mathbb{P}_{in} and \mathbb{P}_{out} be two distributions over \mathbb{R}^d
- Each in-distribution (ID) sample from \mathbb{P}_{in} belongs to one of K classes
- When training an OOD detection model, we have access to:

Class-labeled data from \mathbb{P}_{in}

Unlabeled data from \mathbb{P}_{wild}

$$\mathbb{P}_{\text{wild}} := (1 - \pi)\mathbb{P}_{\text{in}} + \pi\mathbb{P}_{\text{out}}$$

Minimize the proportion of wild samples declared as ID,

subject to:

$$\inf_{\theta} \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{g_{\theta}(\tilde{\mathbf{x}}_i) = \mathrm{in}\} \qquad \qquad \text{Minimize the proportion of wild samples declared as ID, subject to:}$$

$$\mathrm{s.t.} \ \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{g_{\theta}(\mathbf{x}_i) = \mathrm{out}\} \leq \alpha \qquad \qquad \text{No more than 1 - } \alpha \text{ of the ID samples are declared OOD, and...}$$

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{f_{\theta}(\mathbf{x}_i) \neq y_i)\} \leq \tau.$$

$$\inf_{\theta} \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{g_{\theta}(\tilde{\mathbf{x}}_i) = \text{in}\} \qquad \qquad \text{Minimize the proportion of wild samples declared as ID, subject to:}$$

$$\text{s.t. } \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{g_{\theta}(\mathbf{x}_i) = \text{out}\} \leq \alpha \qquad \qquad \text{No more than 1 - } \alpha \text{ of the ID samples are declared OOD, and...}}$$

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{f_{\theta}(\mathbf{x}_i) \neq y_i)\} \leq \tau. \qquad \qquad \text{No more than 1 - } \tau \text{ of the ID samples are given the wrong class label.}}$$

smooth approx.

$$\operatorname{argmin}_{\theta,w \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{m} \frac{1}{1 + \exp(-w \cdot E_{\theta}(\tilde{\mathbf{x}}_i))}$$

$$\text{s.t. } \frac{1}{n} \sum_{j=1}^{n} \frac{1}{1 + \exp(w \cdot E_{\theta}(\mathbf{x}_i))} \leq \alpha$$

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{\operatorname{cls}}(f_{\theta}(\mathbf{x}_j), y_j) \leq \tau.$$

Binary-sigmoid loss: distinguish between ID and OOD samples

smooth approx.

Energy-based uncertainty score (higher for ID samples)

$$E_{ heta} = \log \sum_{j=1}^K e^{f_{ heta}^{(j)}(\mathbf{x})}$$

Binary-sigmoid loss: distinguish between ID and OOD samples

$$\begin{split} \mathcal{L}_{\text{ood}}(g_{\theta}(\tilde{\mathbf{x}}_i), \text{in}) &= \frac{1}{1 + \exp(-w \mid E_{\theta}(\tilde{\mathbf{x}}_i))} \\ \\ \text{argmin}_{\theta, w \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{m} \frac{1}{1 + \exp(-w \cdot E_{\theta}(\tilde{\mathbf{x}}_i))} \\ \text{s.t.} \ \frac{1}{n} \sum_{j=1}^{n} \frac{1}{1 + \exp(w \cdot E_{\theta}(\mathbf{x}_i))} \leq \alpha \\ \\ \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{\text{cls}}(f_{\theta}(\mathbf{x}_j), y_j) \leq \tau. \end{split}$$

$$\inf_{ heta} rac{1}{m} \sum_{i=1}^m \mathbb{1}\{g_{ heta}(ilde{\mathbf{x}}_i) = \mathsf{in}\}$$

s.t.
$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{g_{\theta}(\mathbf{x}_i) = \text{out}\} \leq \alpha$$

$$\frac{1}{n}\sum_{i=1}^n \mathbb{1}\{f_{\theta}(\mathbf{x}_i) \neq y_i)\} \leq \tau.$$

smooth approx.

Learning Objective
$$\inf_{\theta} \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{g_{\theta}(\tilde{\mathbf{x}}_i) = \text{in}\}$$
 argmi

smooth approx.

s.t.
$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{g_{\theta}(\mathbf{x}_i) = \text{out}\} \leq \alpha$$

$$\frac{1}{n}\sum_{i=1}^n \mathbb{1}\{f_{\theta}(\mathbf{x}_i) \neq y_i)\} \leq \tau.$$

Energy-based uncertainty score (higher for ID samples)

Cross-entropy loss: correctly classify ID samples

• Solve constrained optimization problems of the form:

$$\min_{ heta \in \mathbb{R}^p} f(heta)$$
 s.t. $c_i(heta) \leq 0 \, orall i \in [q],$

as a sequence of unconstrained optimization problems.

• Define the classical augmented Lagrangian function:

$$\mathcal{L}_{\beta}(\theta,\lambda) = f(\theta) + \sum_{i=1}^{q} \psi_{\beta}(c_{i}(\theta),\lambda_{i}) , \quad \text{where} \quad \psi_{\beta}(u,v) = \begin{cases} uv + \frac{\beta}{2}u^{2} & \beta u + v \geq 0 \\ -\frac{v^{2}}{2\beta} & \text{o/w} \end{cases}$$

• At iteration k, ALM minimizes \mathcal{L}_{β} w.r.t. θ and then performs the gradient ascent update:

1.
$$\theta^{(k+1)} \leftarrow \operatorname{argmin}_{\theta} \mathcal{L}_{\beta_k}(\theta, \lambda^{(k)})$$

2.
$$\lambda^{(k+1)} \longleftarrow \lambda^{(k)} + \rho \nabla_{\lambda} \mathcal{L}_{\beta_k}(\theta^{(k+1)}, \lambda)$$

• Solve constrained optimization problems of the form:

$$\min_{\theta \in \mathbb{R}^p} f(\theta)$$
 convex s.t. $c_i(\theta) \leq 0 \, \forall i \in [q],$

as a sequence of unconstrained optimization problems.

• Define the classical augmented Lagrangian function:

$$\mathcal{L}_{\beta}(\theta,\lambda) = f(\theta) + \sum_{i=1}^{q} \psi_{\beta}(c_{i}(\theta),\lambda_{i}) , \quad \text{where} \quad \psi_{\beta}(u,v) = \begin{cases} uv + \frac{\beta}{2}u^{2} & \beta u + v \geq 0 \\ -\frac{v^{2}}{2\beta} & \text{o/w} \end{cases}$$

• At iteration k, ALM minimizes \mathcal{L}_{β} w.r.t. θ and then performs the gradient ascent update:

1.
$$\theta^{(k+1)} \longleftarrow \operatorname{argmin}_{\theta} \mathcal{L}_{\beta_k}(\theta, \lambda^{(k)})$$

2.
$$\lambda^{(k+1)} \longleftarrow \lambda^{(k)} + \rho \nabla_{\lambda} \mathcal{L}_{\beta_k}(\theta^{(k+1)}, \lambda)$$

Solve constrained optimization problems of the form:

$$\min_{\theta \in \mathbb{R}^p} f(\theta)$$
 convex s.t. $c_i(\theta) \leq 0 \, \forall i \in [q],$

as a sequence of unconstrained optimization problems.

Define the classical augmented Lagrangian function:

The the classical augmented Lagrangian function:
$$\mathcal{L}_{\beta}(\theta,\lambda) = f(\theta) + \sum_{i=1}^{q} \psi_{\beta}(c_{i}(\theta),\lambda_{i}) \;, \quad \text{where} \quad \psi_{\beta}(u,v) = \begin{cases} uv + \frac{\beta}{2}u^{2} & \beta u + v \geq 0 \\ -\frac{v^{2}}{2\beta} & \text{o/w} \end{cases}$$

$$\lambda = (\lambda_{1},\ldots,\lambda_{q})^{\top}$$

At iteration k, ALM minimizes \mathcal{L}_{β} w.r.t. θ and then performs the gradient ascent update:

1.
$$\theta^{(k+1)} \longleftarrow \operatorname{argmin}_{\theta} \mathcal{L}_{\beta_k}(\theta, \lambda^{(k)})$$

2.
$$\lambda^{(k+1)} \longleftarrow \lambda^{(k)} + \rho \nabla_{\lambda} \mathcal{L}_{\beta_k}(\theta^{(k+1)}, \lambda)$$

Solve constrained optimization problems of the form:

$$\min_{ heta \in \mathbb{R}^p} f(heta)$$
 convex s.t. $c_i(heta) \leq 0 \, \forall i \in [q],$

as a sequence of unconstrained optimization problems.

Define the classical augmented Lagrangian function:

ne the classical augmented Lagrangian function:
$$\mathcal{L}_{\beta}(\theta,\lambda) = f(\theta) + \sum_{i=1}^{q} \psi_{\beta}(c_{i}(\theta),\lambda_{i}) \;, \quad \text{where} \quad \psi_{\beta}(u,v) = \begin{cases} uv + \frac{\beta}{2}u^{2} & \beta u + v \geq 0 \\ -\frac{v^{2}}{2\beta} & \text{o/w} \end{cases}$$

$$\lambda = (\lambda_{1},\ldots,\lambda_{q})^{\top}$$

At iteration k, ALM minimizes \mathcal{L}_{β} w.r.t. θ and then performs the gradient ascent update:

learning rate
$$\begin{array}{c} 1. \ \theta^{(k+1)} \longleftarrow \operatorname{argmin}_{\theta} \mathcal{L}_{\beta_k}(\theta,\lambda^{(k)}) \\ \\ 2. \ \lambda^{(k+1)} \longleftarrow \lambda^{(k)} + \rho \nabla_{\lambda} \mathcal{L}_{\beta_k}(\theta^{(k+1)},\lambda) \end{array}$$

penalty parameter (fixed beforehand or adapted during training)

Implementing ALM with neural networks

```
Algorithm 1 WOODS
                                                   (Wild OOD
                                                                                   detection sans-
Supervision)
 1: Input: \theta_{(1)}^{(1)}, \lambda_{(1)}^{(1)} \beta_1, \beta_2, epoch length T, batch size B,
        learning rate \mu_1, learning rate \mu_2, penalty multiplier \gamma,
        tol
  2: for epoch = 1, 2, ... do
              for t = 1, 2, ..., T - 1 do
                       Sample a batch of data, calculate \mathcal{L}_{\beta}^{\text{batch}}(\theta, \lambda)
                     \theta_{(\text{epoch})}^{(t+1)} \longleftarrow \theta_{(\text{epoch})}^{(t)} - \mu_1 \nabla_{\theta} \mathcal{L}_{\beta}^{\text{batch}}(\theta, \lambda)
              \lambda^{(\text{epoch}+1)} \leftarrow \lambda^{(\text{epoch})} + \mu_2 \nabla_{\theta} \mathcal{L}_{\beta}(\theta_{(\text{epoch})}^{(T)}, \lambda^{(\text{epoch})})
              if \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{\text{ood}}(g_{\theta^{(T)}_{\text{(enoch)}}}(\mathbf{x}_i), \text{out}) > \alpha + \text{tol then}
                \beta_1 \longleftarrow \gamma \beta_1
               end if
              if rac{1}{n}\sum_{i=1}^n \mathcal{L}_{	ext{cls}}(f_{	heta_{(	ext{epoch})}^{(T)}}(\mathbf{x}_i),y_i) > 	au + 	ext{tol} then
                  \beta_2 \longleftarrow \gamma \beta_2
               end if
13:
              \theta_{(\text{epoch}+1)}^{(1)} \longleftarrow \theta_{(\text{epoch})}^{(T)}
15: end for
```

$$\mathcal{L}^{\text{batch}}_{\beta}(\theta,\lambda) = \frac{1}{B} \sum_{i \in I} \mathcal{L}_{\text{ood}}(g_{\theta}(\tilde{\mathbf{x}}_i), \text{in}) \\ + \psi_{\beta_1}(\frac{1}{B} \sum_{j \in J} \mathcal{L}_{\text{ood}}(g_{\theta}(\mathbf{x}_j), \text{out}) - \alpha, \lambda_1^{(\text{epoch})}) \\ + \psi_{\beta_2}(\frac{1}{B} \sum_{j \in J} \mathcal{L}_{\text{cls}}(f_{\theta}(\mathbf{x}_j), y_j) - \tau, \lambda_2^{(\text{epoch})})],$$

$$\psi_{\beta}(u, v) = \begin{cases} uv + \frac{\beta}{2}u^2 & \beta u + v \geq 0 \\ -\frac{v^2}{2\beta} & \text{o/w} \end{cases}$$

I and *J* are mini-batches of size *B* sampled randomly from the wild and ID data, respectively.

Because ψ is convex in u, the function $\mathcal{L}_{\beta}^{\text{batch}}$ is an upper bound on \mathcal{L}_{β} at each epoch (via Jensen's inequality).

Overview of our training procedure.

Experimental setup

- ID datasets: CIFAR-10 and CIFAR-100
- OOD datasets: SVHN, Textures, Places, LSUN-Crop, LSUN-Resize, and 300K Random Images (cleaned subset of 80 Million TinyImages)
- Models are initialized using a WideResNet architecture pre-trained on CIFAR-10/100 and trained for 100 epochs
 - \circ Architecture: 40 layers, widen factor = 2, weight decay = 0.0005, momentum = 0.09
 - o Optimization: SGD with Nesterov momentum
- Metrics: FPR@95, AUROC, accuracy (on ID classification)

Method	SVHN		LSUN-R		OOD Dataset LSUN-C		Textures		Places365		Average		Acc.	
	$FPR\downarrow$	$AUROC \!\!\uparrow$	$FPR\downarrow$	$AUROC \!\!\uparrow$	$FPR\downarrow$	$AUROC\uparrow$	$FPR\downarrow$	$AUROC\uparrow$	$FPR\downarrow$	$AUROC\uparrow$	$FPR\downarrow$	$AUROC\uparrow$		
	With \mathbb{P}_{in} only													
MSP	84.59	71.44	82.42	75.38	66.54	83.79	83.29	73.34	82.84	73.78	79.94	75.55	75.96	
ODIN	84.66	67.26	71.96	81.82	55.55	87.73	79.27	73.45	87.88	71.63	75.86	76.38	75.96	
Energy	85.82	73.99	79.47	79.23	35.32	93.53	79.41	76.28	80.56	75.44	72.12	79.69	75.96	
Mahalanobis	57.52	86.01	21.23	96.00	91.18	69.69	39.39	90.57	88.83	67.87	59.63	82.03	75.96	
GODIN	83.38	84.05	62.24	88.22	72.86	83.84	83.83	78.91	80.56	76.14	76.57	82.23	75.33	
CSI	64.70	84.97	91.55	63.42	38.10	92.52	74.70	92.66	82.25	73.63	70.26	81.44	69.90	
						Ī	With \mathbb{P}_{in} and	\mathbb{P}_{wild}						
OE	$1.57^{\pm0.1}$	$99.63^{\pm0.0}$	$0.93^{\pm0.2}$	$99.79^{\pm0.0}$	$3.83^{\pm0.4}$	$99.26^{\pm0.1}$	$27.89^{\pm0.5}$		$60.24^{\pm0.6}$	$83.43^{\pm0.6}$	$18.89^{\pm0.4}$	$95.09^{\pm0.2}$	$71.65^{\pm0.4}$	
Energy (w/ OE)	$1.47^{\pm0.3}$	$99.68^{\pm0.0}$	$2.68^{\pm1.9}$	$99.50^{\pm0.3}$	$2.52^{\pm0.4}$	$99.44^{\pm0.1}$	$37.26^{\pm 9.1}$	$91.26^{\pm2.5}$	$54.67^{\pm1.0}$	$86.09^{\pm0.4}$	$19.72^{\pm 2.5}$	$95.19^{\pm0.7}$	$73.46^{\pm0.8}$	
WOODS (ours)	$0.52^{\pm0.1}$	$99.88^{\pm0.0}$	$0.38^{\pm0.1}$	$99.92^{\pm0.0}$	$0.93^{\pm0.2}$		$17.92^{\pm0.5}$	$96.44^{\pm0.2}$	$37.90^{\pm0.6}$	$91.22^{\pm0.3}$	$11.53^{\pm0.3}$	$97.45^{\pm0.1}$	$74.79^{\pm0.2}$	
WOODS-alt (ours)	$0.12^{\pm0.0}$	99.96 $^{\pm0.0}$	$0.07^{\pm0.1}$	99.96 ^{±0.0}	$0.11^{\pm0.0}$	99.96 ^{±0.0}	$9.12^{\pm0.3}$	96.65 $^{\pm0.1}$	$29.58^{\pm0.4}$	$90.60^{\pm0.3}$	$7.80^{\pm0.5}$	97.43 ^{±0.5}	75.22 $^{\pm0.2}$	

Table 1. Main results when $\mathbb{P}_{\text{out}}^{\text{test}} = \mathbb{P}_{\text{out}}$. Comparison with competitive OOD detection methods on CIFAR-100. For methods using \mathbb{P}_{wild} , we train under the same dataset and same $\pi = 0.1$. For each dataset, we create corresponding wild mixture distribution $\mathbb{P}_{\text{wild}} := (1 - \pi)\mathbb{P}_{\text{in}} + \pi\mathbb{P}_{\text{out}}$ for training and test on the corresponding OOD dataset. \uparrow indicates larger values are better and vice versa. $\pm x$ denotes the standard error, rounded to the first decimal point.

							OOL) Dataset					Avo	ro co	
		Method	SVHN		LSUN-R		LSU	UN-C	Textures		Places365		Ave	rage	Acc.
			$FPR\downarrow$	$AUROC\uparrow$	FPR↓	AUROC↑	FPR↓	AUROC↑	$FPR\downarrow$	AUROC↑	$FPR\downarrow$	AUROC↑	$FPR\downarrow$	AUROC↑	
									With Pin or	nly					
		MSP	84.59	71.44	82.42	75.38	66.54	83.79	83.29	73.34	82.84	73.78	79.94	75.55	75.96
		ODIN	84.66	67.26	71.96	81.82	55.55	87.73	79.27	73.45	87.88	71.63	75.86	76.38	75.96
		Energy	85.82	73.99	79.47	79.23	35.32	93.53	79.41	76.28	80.56	75.44	72.12	79.69	75.96
Г	— =	Mahalanobis	57.52	86.01	21.23	96.00	91.18	69.69	39.39	90.57	88.83	67.87	59.63	82.03	75.96
	·	GODIN	83.38	84.05	62.24	88.22	72.86	83.84	83.83	78.91	80.56	76.14	76.57	82.23	75.33
- 48%		CSI	64.70	84.97	91.55	63.42	38.10	92.52	74.70	92.66	82.25	73.63	70.26	81.44	69.90
(avg		With \mathbb{P}_{in} and \mathbb{P}_{wild}													
FPR)		OE	$1.57^{\pm0.1}$	$99.63^{\pm0.0}$			$3.83^{\pm0.4}$		$27.89^{\pm0.5}$	$93.35^{\pm0.2}$	$60.24^{\pm0.6}$	$83.43^{\pm0.6}$	$18.89^{\pm0.4}$	$95.09^{\pm0.2}$	$71.65^{\pm0.4}$
		Energy (w/ OE)	$1.47^{\pm0.3}$	$99.68^{\pm0.0}$	$2.68^{\pm1.9}$		$2.52^{\pm0.4}$		$37.26^{\pm 9.1}$	$91.26^{\pm2.5}$	$54.67^{\pm1.0}$	$86.09^{\pm0.4}$	$19.72^{\pm 2.5}$	$95.19^{\pm0.7}$	$73.46^{\pm0.8}$
L	→ ■	WOODS (ours)	$0.52^{\pm0.1}$	$99.88^{\pm0.0}$	$0.38^{\pm0.1}$	$99.92^{\pm0.0}$	$0.93^{\pm0.2}$	$99.77^{\pm0.0}$	$17.92^{\pm0.5}$	$96.44^{\pm0.2}$	$37.90^{\pm0.6}$	$91.22^{\pm0.3}$	$11.53^{\pm0.3}$	$97.45^{\pm0.1}$	$74.79^{\pm0.2}$
	·	WOODS-alt (ours)	$0.12^{\pm0.0}$	99.96 $^{\pm0.0}$	$0.07^{\pm0.1}$	99.96 ^{±0.0}	$0.11^{\pm0.0}$	99.96 $^{\pm0.0}$	$9.12^{\pm0.3}$	$96.65^{\pm0.1}$	$29.58^{\pm0.4}$	$90.60^{\pm0.3}$	$7.80^{\pm0.5}$	97.43 $^{\pm0.5}$	$75.22^{\pm0.2}$

Table 1. Main results when $\mathbb{P}_{\text{out}}^{\text{test}} = \mathbb{P}_{\text{out}}$. Comparison with competitive OOD detection methods on CIFAR-100. For methods using \mathbb{P}_{wild} , we train under the same dataset and same $\pi = 0.1$. For each dataset, we create corresponding wild mixture distribution $\mathbb{P}_{\text{wild}} := (1 - \pi)\mathbb{P}_{\text{in}} + \pi\mathbb{P}_{\text{out}}$ for training and test on the corresponding OOD dataset. \uparrow indicates larger values are better and vice versa. $\pm x$ denotes the standard error, rounded to the first decimal point.

							OOD	Dataset					Ario	***		
		Method	Method SVHN			LSUN-R LSUN-C			Tex	tures	Places365		Ave	rage	Acc.	
			$FPR\downarrow$	$AUROC\uparrow$	$FPR\downarrow$	AUROC↑	$FPR\downarrow$	AUROC↑	$FPR\downarrow$	AUROC↑	$FPR\downarrow$	AUROC↑	$FPR\downarrow$	AUROC↑		
									With Pin of	nly						
		MSP	84.59	71.44	82.42	75.38	66.54	83.79	83.29	73.34	82.84	73.78	79.94	75.55	75.96	
		ODIN	84.66	67.26	71.96	81.82	55.55	87.73	79.27	73.45	87.88	71.63	75.86	76.38	75.96	
		Energy	85.82	73.99	79.47	79.23	35.32	93.53	79.41	76.28	80.56	75.44	72.12	79.69	75.96	
Г	一一 二	Mahalanobis	57.52	86.01	21.23	96.00	91.18	69.69	39.39	90.57	88.83	67.87	59.63	82.03	75.96	
	·	GODIN	83.38	84.05	62.24	88.22	72.86	83.84	83.83	78.91	80.56	76.14	76.57	82.23	75.33	
- 48%		CSI	64.70	84.97	91.55	63.42	38.10	92.52	74.70	92.66	82.25	73.63	70.26	81.44	69.90	
(avg								Ţ	With ℙ _{in} and	$\mathbb{P}_{ ext{wild}}$						
FPR)		OE						$99.26^{\pm0.1}$			$60.24^{\pm0.6}$			$95.09^{\pm0.2}$		- 7.3%
		Energy (w/ OE)	$1.47^{\pm0.3}$	$99.68^{\pm0.0}$	$2.68^{\pm1.9}$		$2.52^{\pm0.4}$	$99.44^{\pm0.1}$			$54.67^{\pm1.0}$	$86.09^{\pm0.4}$	$19.72^{\pm 2.5}$	$95.19^{\pm0.7}$	$73.46^{\pm0.8}$	(avg
L	$ ightarrow \square$	WOODS (ours)	$0.52^{\pm0.1}$	$99.88^{\pm0.0}$	$0.38^{\pm0.1}$	$99.92^{\pm0.0}$	$0.93^{\pm0.2}$	$99.77^{\pm0.0}$	$17.92^{\pm0.5}$	$96.44^{\pm0.2}$	$37.90^{\pm0.6}$	$91.22^{\pm0.3}$	$11.53^{\pm0.3}$	$97.45^{\pm0.1}$	$74.79^{\pm0.2}$	FPR)
		WOODS-alt (ours)	$0.12^{\pm0.0}$	99.96 $^{\pm0.0}$	$0.07^{\pm0.1}$	99.96 $^{\pm0.0}$	$0.11^{\pm0.0}$	99.96 $^{\pm0.0}$	$9.12^{\pm0.3}$	$96.65^{\pm0.1}$	$29.58^{\pm0.4}$	$90.60^{\pm0.3}$	$7.80^{\pm0.5}$	$97.43^{\pm0.5}$	$75.22^{\pm0.2}$	

Table 1. Main results when $\mathbb{P}_{\text{out}}^{\text{test}} = \mathbb{P}_{\text{out}}$. Comparison with competitive OOD detection methods on CIFAR-100. For methods using \mathbb{P}_{wild} , we train under the same dataset and same $\pi = 0.1$. For each dataset, we create corresponding wild mixture distribution $\mathbb{P}_{\text{wild}} := (1 - \pi)\mathbb{P}_{\text{in}} + \pi\mathbb{P}_{\text{out}}$ for training and test on the corresponding OOD dataset. \uparrow indicates larger values are better and vice versa. $\pm x$ denotes the standard error, rounded to the first decimal point.

		OOD Dataset													
	Method	SV	'HN	LSUN-R		LSU	UN-C	Textures		Places365		Ave	rage	Acc.	
		$FPR\downarrow$	$AUROC\uparrow$	$FPR\downarrow$	AUROC↑	$FPR\downarrow$	AUROC↑	$FPR\downarrow$	$AUROC\uparrow$	$FPR\downarrow$	AUROC↑	$FPR\downarrow$	AUROC↑		
								With Pin or	nly						
	MSP	84.59	71.44	82.42	75.38	66.54	83.79	83.29	73.34	82.84	73.78	79.94	75.55	75.96	
	ODIN	84.66	67.26	71.96	81.82	55.55	87.73	79.27	73.45	87.88	71.63	75.86	76.38	75.96	
	Energy	85.82	73.99	79.47	79.23	35.32	93.53	79.41	76.28	80.56	75.44	72.12	79.69	75.96	
	Mahalanobis	57.52	86.01	21.23	96.00	91.18	69.69	39.39	90.57	88.83	67.87	59.63	82.03	75.96	
	GODIN	83.38	84.05	62.24	88.22	72.86	83.84	83.83	78.91	80.56	76.14	76.57	82.23	75.33	
%	CSI	64.70	84.97	91.55	63.42	38.10	92.52	74.70	92.66	82.25	73.63	70.26	81.44	69.90	
							Ţ	With P _{in} and	\mathbb{P}_{wild}						
)	OE	$1.57^{\pm0.1}$	$99.63^{\pm0.0}$	$0.93^{\pm0.2}$	$99.79^{\pm0.0}$	$3.83^{\pm0.4}$	$99.26^{\pm0.1}$	$27.89^{\pm0.5}$	$93.35^{\pm0.2}$	$60.24^{\pm0.6}$	$83.43^{\pm0.6}$	$18.89^{\pm0.4}$	$95.09^{\pm0.2}$	$71.65^{\pm0.4}$	
	Energy (w/ OE)	$1.47^{\pm0.3}$	$99.68^{\pm0.0}$	$2.68^{\pm1.9}$	$99.50^{\pm0.3}$	$2.52^{\pm0.4}$	$99.44^{\pm0.1}$	$37.26^{\pm 9.1}$	$91.26^{\pm 2.5}$	$54.67^{\pm1.0}$	$86.09^{\pm0.4}$	$19.72^{\pm 2.5}$	$95.19^{\pm0.7}$	$73.46^{\pm0.8}$	
	WOODS (ours)	$0.52^{\pm0.1}$	$99.88^{\pm0.0}$	$0.38^{\pm0.1}$	$99.92^{\pm0.0}$	$0.93^{\pm0.2}$	$99.77^{\pm0.0}$	$17.92^{\pm0.5}$	$96.44^{\pm0.2}$	$37.90^{\pm0.6}$	$91.22^{\pm0.3}$	$11.53^{\pm0.3}$	$97.45^{\pm0.1}$	$74.79^{\pm0.2}$	
•	WOODS-alt (ours)	$0.12^{\pm0.0}$	99.96 $^{\pm0.0}$	$0.07^{\pm0.1}$	99.96 $^{\pm0.0}$	$0.11^{\pm0.0}$	99.96 $^{\pm0.0}$	$9.12^{\pm0.3}$	$96.65^{\pm0.1}$	$29.58^{\pm0.4}$	$90.60^{\pm0.3}$	$7.80^{\pm0.5}$	97.43 $^{\pm0.5}$	75.22 $^{\pm0.2}$	

Table 1. Main results when $\mathbb{P}_{\text{out}}^{\text{test}} = \mathbb{P}_{\text{out}}$. Comparison with competitive OOD detection methods on CIFAR-100. For methods using \mathbb{P}_{wild} , we train under the same dataset and same $\pi = 0.1$. For each dataset, we create corresponding wild mixture distribution $\mathbb{P}_{\text{wild}} := (1 - \pi)\mathbb{P}_{\text{in}} + \pi\mathbb{P}_{\text{out}}$ for training and test on the corresponding OOD dataset. \uparrow indicates larger values are better and vice versa. $\pm x$ denotes the standard error, rounded to the first decimal point.

Ablation on π

						OOD	Dataset						
Method	SV	SVHN		LSUN-R		N-C	Textures		Places365		300K Rand. Img.		Acc.
	$FPR\downarrow$	AUROC↑	$FPR\downarrow$	AUROC↑	FPR↓	$AUROC\uparrow$	FPR↓	$AUROC\uparrow$	FPR↓	$AUROC\uparrow$	$FPR\downarrow$	AUROC↑	
	200					0.00	$\pi = 0.05$	W-10040	201000000	0.0000	200000	B000000	
OE	$80.21^{\pm 1.7}$	$77.47^{\pm1.8}$	$77.97^{\pm2.3}$	$78.68^{\pm1.7}$	$61.27^{\pm1.4}$	$86.27^{\pm0.4}$	$77.15^{\pm1.2}$	$77.94^{\pm0.5}$	$80.24^{\pm0.3}$	$74.86^{\pm0.2}$	$75.33^{\pm0.3}$	$77.16^{\pm0.3}$	$73.63^{\pm0}$
Energy (w/ OE)	$77.47^{\pm 2.0}$	$80.48^{\pm1.2}$	$70.83^{\pm3.1}$	$82.86^{\pm2.0}$	$29.42^{\pm4.3}$	$94.61^{\pm0.8}$	$72.05^{\pm0.8}$	$80.73^{\pm0.5}$	$74.69^{\pm0.6}$	$78.60^{\pm0.4}$	$66.91^{\pm0.7}$	$80.44^{\pm0.5}$	$75.77^{\pm0}$
WOODS (ours)	$74.54^{\pm1.7}$	$82.01^{\pm 1.3}$	$66.29^{\pm 3.9}$	$84.46^{\pm2.3}$	19.07 $^{\pm 1.6}$	$96.48^{\pm0.3}$	$65.75^{\pm0.6}$	$83.71^{\pm0.2}$	69.97 $^{\pm 1.1}$	$80.82^{\pm0.5}$	$62.48^{\pm1.1}$	$82.92^{\pm0.5}$	75.92 $^{\pm0}$
							$\pi = 0.1$						
OE	$79.56^{\pm1.6}$	$77.00^{\pm1.2}$	$76.86^{\pm2.1}$	$78.75^{\pm1.2}$	$58.53^{\pm2.8}$	$86.92^{\pm0.8}$	$74.63^{\pm1.2}$	$79.13^{\pm0.5}$	$78.52^{\pm0.3}$	$75.68^{\pm0.1}$	$72.18^{\pm0.2}$	$78.48^{\pm0.3}$	$73.53^{\pm0}$
Energy (w/ OE)	$77.45^{\pm2.1}$	$80.94^{\pm1.4}$	$67.13^{\pm 3.6}$	$83.68^{\pm2.4}$	$27.08^{\pm2.1}$	$94.97^{\pm0.4}$	$70.15^{\pm 1.0}$	$81.59^{\pm0.6}$	$71.71^{\pm 1.1}$	$79.89^{\pm0.6}$	$64.24^{\pm2.3}$	$82.28^{\pm1.1}$	$75.27^{\pm0}$
WOODS (ours)	71.67 $^{\pm 1.9}$	84.11 $^{\pm 1.4}$	$59.27^{\pm 3.9}$	$86.80^{\pm 1.9}$	$15.03^{\pm 1.4}$	$97.24^{\pm0.3}$	$61.38^{\pm0.7}$	$85.57^{\pm0.2}$	$64.19^{\pm1.0}$	$83.12^{\pm0.5}$	$55.51^{\pm 1.3}$	$85.72^{\pm0.4}$	75.64 ^{±0}
							$\pi = 0.2$						
OE	$72.59^{\pm 3.9}$	$81.38^{\pm1.9}$	$65.04^{\pm3.8}$	$82.65^{\pm1.8}$	$48.62^{\pm3.1}$	$89.52^{\pm0.8}$	$65.95^{\pm1.2}$	$82.43^{\pm0.3}$	$71.29^{\pm0.7}$	$78.71^{\pm0.4}$	$65.40^{\pm0.8}$	$81.99^{\pm0.1}$	$72.89^{\pm0}$
Energy (w/ OE)	$72.76^{\pm2.5}$	$83.48^{\pm1.2}$	$62.53^{\pm 5.7}$	$84.46^{\pm2.8}$	$22.49^{\pm1.2}$	$95.84^{\pm0.2}$	$64.93^{\pm0.5}$	$83.87^{\pm0.4}$	$64.62^{\pm0.2}$	$82.72^{\pm0.2}$	$56.07^{\pm1.2}$	$85.50^{\pm0.4}$	$75.00^{\pm0}$
WOODS (ours)	$71.61^{\pm 2.3}$	$84.99^{\pm 1.2}$	$51.66^{\pm2.8}$	$89.68^{\pm1.2}$	$12.63^{\pm0.6}$	$97.67^{\pm0.1}$	$59.77^{\pm0.5}$	$86.74^{\pm0.1}$	$58.29^{\pm0.4}$	$85.22^{\pm0.1}$	$49.87^{\pm 1.8}$	$88.25^{\pm0.2}$	75.26 $^{\pm0}$
						0.00	$\pi = 0.5$						
OE	$68.80^{\pm 2.8}$	$82.89^{\pm1.1}$	$47.64^{\pm4.7}$	$88.84^{\pm1.8}$	$30.86^{\pm1.9}$	$93.91^{\pm0.4}$	$56.18^{\pm 1.6}$	$86.11^{\pm0.4}$	$62.24^{\pm0.5}$	$82.53^{\pm0.3}$	$53.70^{\pm 1.6}$	$86.58^{\pm0.2}$	$73.00^{\pm0}$
Energy (w/ OE)	$69.81^{\pm 2.4}$	$85.59^{\pm1.0}$	$56.11^{\pm3.1}$	$87.41^{\pm 1.5}$	$16.23^{\pm0.6}$	$97.02^{\pm0.1}$	$58.41^{\pm0.9}$	$86.70^{\pm0.1}$	$58.31^{\pm0.5}$	$85.36^{\pm0.4}$	$48.12^{\pm1.3}$	$88.76^{\pm0.3}$	$74.87^{\pm0}$
WOODS (ours)	$69.41^{\pm 2.7}$	$86.76^{\pm0.8}$	$44.60^{\pm 2.6}$	$91.72^{\pm0.7}$	$12.70^{\pm0.4}$	$97.71^{\pm0.1}$	$57.60^{\pm0.6}$	87.74 $^{\pm0.1}$	$55.03^{\pm0.3}$	$86.82^{\pm0.1}$	$45.00^{\pm0.7}$	$89.85^{\pm0.2}$	75.72 $^{\pm 0}$
							$\pi = 1.0$						
OE	$46.45^{\pm2.7}$	$91.82^{\pm0.5}$	$51.26^{\pm3.6}$	$88.47^{\pm1.2}$	$20.08^{\pm0.7}$	$96.42^{\pm0.1}$	$51.31^{\pm0.8}$	$88.81^{\pm0.2}$	$55.66^{\pm0.4}$	$87.28^{\pm0.1}$	$44.29^{\pm0.6}$	$90.44^{\pm0.1}$	$74.99^{\pm 0}$
Energy (w/ OE)	$56.40^{\pm4.0}$	$89.48^{\pm1.2}$	$54.41^{\pm 2.5}$	$88.77^{\pm0.8}$	$17.14^{\pm0.9}$	$96.91^{\pm0.1}$	$52.36^{\pm1.3}$	$89.38^{\pm0.3}$	$54.11^{\pm0.9}$	$88.35^{\pm0.2}$	$43.42^{\pm1.0}$	$90.88^{\pm0.1}$	$74.85^{\pm 0}$
WOODS (ours)	$62.13^{\pm 4.4}$	$88.89^{\pm1.4}$	45.87 $^{\pm1.1}$	$91.64^{\pm0.2}$	$13.48^{\pm1.1}$	$97.58^{\pm0.2}$	$56.83^{\pm0.7}$	$88.19^{\pm0.3}$	$54.57^{\pm0.3}$	$87.43^{\pm0.3}$	$45.61^{\pm3.0}$	$89.78^{\pm1.0}$	$75.60^{\pm 0}$

Table 2. Effect of π . ID dataset is CIFAR-100, and the auxiliary outlier training data is 300K Random Images. \uparrow indicates larger values are better and vice versa. $\pm x$ denotes the standard error, rounded to the first decimal point.

Ablation on π

Method	SV	HN	LSU	N-R	LSU	N-C	Text	tures	Place	es365	300K Ra	nd. Img.	Acc.
	$FPR\downarrow$	AUROC↑	$FPR\downarrow$	AUROC↑	FPR↓	AUROC↑	$FPR\downarrow$	AUROC↑	FPR↓	AUROC↑	FPR↓	AUROC↑	
							$\pi = 0.05$						
OE	$80.21^{\pm 1.7}$	$77.47^{\pm1.8}$	$77.97^{\pm2.3}$	$78.68^{\pm1.7}$	$61.27^{\pm1.4}$	$86.27^{\pm0.4}$	$77.15^{\pm1.2}$	$77.94^{\pm0.5}$	$80.24^{\pm0.3}$	$74.86^{\pm0.2}$	$75.33^{\pm0.3}$	$77.16^{\pm0.3}$	73.63 ^{±0.3}
Energy (w/ OE)	$77.47^{\pm2.0}$	$80.48^{\pm1.2}$	$70.83^{\pm3.1}$	$82.86^{\pm2.0}$	$29.42^{\pm4.3}$	$94.61^{\pm0.8}$	$72.05^{\pm0.8}$	$80.73^{\pm0.5}$	$74.69^{\pm0.6}$	$78.60^{\pm0.4}$	$66.91^{\pm0.7}$	$80.44^{\pm0.5}$	$75.77^{\pm0.1}$
WOODS (ours)	$74.54^{\pm1.7}$	$82.01^{\pm 1.3}$	$66.29^{\pm 3.9}$	$84.46^{\pm2.3}$	$19.07^{\pm 1.6}$	$96.48^{\pm0.3}$	$65.75^{\pm0.6}$	83.71 $^{\pm0.2}$	69.97 ^{±1.1}	$80.82^{\pm0.5}$	62.48 $^{\pm1.1}$	82.92 ^{±0.5}	75.92 ^{±0.1}
							$\pi = 0.1$						
OE	$79.56^{\pm1.6}$	$77.00^{\pm 1.2}$	$76.86^{\pm2.1}$	$78.75^{\pm1.2}$	$58.53^{\pm2.8}$	$86.92^{\pm0.8}$	$74.63^{\pm1.2}$	$79.13^{\pm0.5}$	$78.52^{\pm0.3}$	$75.68^{\pm0.1}$	$72.18^{\pm0.2}$	78.48 ^{±0.3}	$73.53^{\pm0.4}$
Energy (w/ OE)	$77.45^{\pm2.1}$	$80.94^{\pm1.4}$	$67.13^{\pm 3.6}$	$83.68^{\pm2.4}$	$27.08^{\pm2.1}$	$94.97^{\pm0.4}$	$70.15^{\pm1.0}$	$81.59^{\pm0.6}$	$71.71^{\pm1.1}$	$79.89^{\pm0.6}$	64.24 ^{±2,3}	$82.28^{\pm1.1}$	$75.27^{\pm0.2}$
WOODS (ours)	$71.67^{\pm 1.9}$	84.11 $^{\pm 1.4}$	$59.27^{\pm 3.9}$	$86.80^{\pm 1.9}$	$15.03^{\pm 1.4}$	$97.24^{\pm0.3}$	$61.38^{\pm0.7}$	85.57 $^{\pm0.2}$	64.19 ^{±1.0}	$83.12^{\pm0.5}$	55.51 ±1.3	$85.72^{\pm0.4}$	$75.64^{\pm0.3}$
							$\pi = 0.2$				K		
OE	$72.59^{\pm 3.9}$	$81.38^{\pm1.9}$	$65.04^{\pm3.8}$	$82.65^{\pm1.8}$	$48.62^{\pm3.1}$	$89.52^{\pm0.8}$	$65.95^{\pm1.2}$	$82.43^{\pm0.3}$	$71.29^{\pm0.7}$	$78.71^{\pm0.4}$	$65.40^{\pm0.8}$	$81.99^{\pm0.1}$	$72.89^{\pm0.3}$
Energy (w/ OE)	$72.76^{\pm2.5}$	$83.48^{\pm1.2}$	$62.53^{\pm 5.7}$	$84.46^{\pm2.8}$	$22.49^{\pm1.2}$	$95.84^{\pm0.2}$	$64.93^{\pm0.5}$	$83.87^{\pm0.4}$	$64.62^{\pm0.2}$	$82.72^{\pm0.2}$	56.07 ^{±1-2}	$85.50^{\pm0.4}$	$75.00^{\pm0.3}$
WOODS (ours)	$71.61^{\pm 2.3}$	$84.99^{\pm1.2}$	$51.66^{\pm2.8}$	89.68 $^{\pm 1.2}$	$12.63^{\pm0.6}$	$97.67^{\pm0.1}$	$59.77^{\pm0.5}$	86.74 $^{\pm0.1}$	58.29 ^{±0.4}	$85.22^{\pm0.1}$	49.87 ^{±1.8}	$88.25^{\pm0.2}$	$75.26^{\pm0.2}$
	No. 10					0.00	$\pi = 0.5$						1000 C 100 C
OE	$68.80^{\pm 2.8}$	$82.89^{\pm1.1}$	$47.64^{\pm4.7}$	$88.84^{\pm1.8}$	$30.86^{\pm1.9}$	$93.91^{\pm0.4}$	$56.18^{\pm 1.6}$	$86.11^{\pm0.4}$		$82.53^{\pm0.3}$	$53.70^{\pm 1.6}$		$73.00^{\pm0.3}$
Energy (w/ OE)	$69.81^{\pm 2.4}$	$85.59^{\pm1.0}$	$56.11^{\pm3.1}$	$87.41^{\pm 1.5}$	$16.23^{\pm0.6}$	$97.02^{\pm0.1}$	$58.41^{\pm0.9}$	$86.70^{\pm0.1}$	$58.31^{\pm0.5}$	$85.36^{\pm0.4}$	$48.12^{\pm1.3}$	$88.76^{\pm0.3}$	$74.87^{\pm0.4}$
WOODS (ours)	$69.41^{\pm 2.7}$	$86.76^{\pm0.8}$	$44.60^{\pm 2.6}$	$91.72^{\pm0.7}$	$12.70^{\pm0.4}$	$97.71^{\pm0.1}$	$57.60^{\pm0.6}$	87.74 ^{±0.1}	55.03 ^{±0.3}	$86.82^{\pm0.1}$	45.00 ^{±0.7}	$89.85^{\pm0.2}$	75.72 ^{±0.0}
							$\pi = 1.0$						
OE	$46.45^{\pm2.7}$	$91.82^{\pm0.5}$	$51.26^{\pm 3.6}$	$88.47^{\pm1.2}$	$20.08^{\pm0.7}$	$96.42^{\pm0.1}$	$51.31^{\pm0.8}$	$88.81^{\pm0.2}$		$87.28^{\pm0.1}$	$44.29^{\pm0.6}$	$90.44^{\pm0.1}$	$74.99^{\pm0.1}$
Energy (w/ OE)	$56.40^{\pm4.0}$	$89.48^{\pm1.2}$	$54.41^{\pm 2.5}$	$88.77^{\pm0.8}$	$17.14^{\pm0.9}$	$96.91^{\pm0.1}$	$52.36^{\pm1.3}$	$89.38^{\pm0.3}$		$88.35^{\pm0.2}$	$43.42^{\pm1.0}$	$90.88^{\pm0.1}$	$74.85^{\pm0.2}$
WOODS (ours)	$62.13^{\pm 4.4}$	$88.89^{\pm1.4}$	$45.87^{\pm1.1}$	$91.64^{\pm0.2}$	$13.48^{\pm1.1}$	$97.58^{\pm0.2}$	$56.83^{\pm0.7}$	$88.19^{\pm0.3}$	$54.57^{\pm0.3}$	$87.43^{\pm0.3}$	$45.61^{\pm3.0}$	$89.78^{\pm1.0}$	$75.60^{\pm0.2}$

Table 2. Effect of π . ID dataset is CIFAR-100, and the auxiliary outlier training data is 300K Random Images. \uparrow indicates larger values are better and vice versa. $\pm x$ denotes the standard error, rounded to the first decimal point.

Conclusion

- We propose a novel framework for OOD detection using unlabeled "wild" data, which occurs abundantly in the open world and can be easily collected by deployed systems
- Augmented Lagrangian methods for constrained optimization problems can be incorporated into the training process of a neural network, achieving state-of-the-art OOD detection performance and without sacrificing ID classification accuracy
- This framework may dramatically improve real-world OOD detection, enhancing the reliability of deployed ML systems

References

- Bendale, A. and Boult, T. Towards open world recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1893–1902, 2015.
- Bevandić, P., Krešo, I., Oršić, M., and Šegvić, S. Discriminative out-of-distribution detection for semantic segmentation. arXiv preprint arXiv:1808.07703, 2018.
- Blanchard, G., Lee, G., and Scott, C. Semi-supervised novelty detection. *The Journal of Machine Learning Research*, 11:2973–3009, 2010.
- Chalapathy, R. and Chawla, S. Deep learning for anomaly detection: A survey. arXiv preprint arXiv:1901.03407, 2019.
- Chalapathy, R., Menon, A. K., and Chawla, S. Anomaly detection using one-class neural networks. arXiv preprint arXiv:1802.06360, 2018.
- Chen, J., Li, Y., Wu, X., Liang, Y., and Jha, S. Atom: Robustifying out-of-distribution detection using outlier mining. In Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2021.
- Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and Vedaldi, a. A. Describing Textures in the Wild. In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.
- Daniel, T., Kurutach, T., and Tamar, A. Deep variational semi-supervised novelty detection. arXiv preprint arXiv:1911.04971, 2019.
- Du, X., Wang, X., Gozum, G., and Li, Y. Unknown-aware object detection: Learning what you don't know from videos in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022a.

- Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of machine learning research*, 12(7), 2011.
- Ergen, T. and Kozat, S. S. Unsupervised anomaly detection with 1stm neural networks. *IEEE transactions on neural* networks and learning systems, 31(8):3127–3141, 2019.
- Hendrycks, D. and Gimpel, K. A baseline for detecting misclassified and out-of-distribution examples in neural networks. Proceedings of International Conference on Learning Representations, 2017.
- Hendrycks, D., Mazeika, M., and Dietterich, T. Deep anomaly detection with outlier exposure. In *International Conference on Learning Representations*, 2019.
- Hestenes, M. R. Multiplier and gradient methods. *Journal of optimization theory and applications*, 4(5):303–320, 1969.
- Hsu, Y.-C., Shen, Y., Jin, H., and Kira, Z. Generalized odin: Detecting out-of-distribution image without learning from out-of-distribution data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10951–10960, 2020.
- Huang, R., Geng, A., and Li, Y. On the importance of gradients for detecting distributional shifts in the wild. In Advances in Neural Information Processing Systems, 2021.
- Huber, P. J. Robust estimation of a location parameter. Annals of Mathematical Statistics, 35:73–101, March 1964.
- Krizhevsky, A., Hinton, G., and others. Learning multiple layers of features from tiny images. 2009. Publisher: Citeseer.
- Lee, K., Lee, H., Lee, K., and Shin, J. Training confidencecalibrated classifiers for detecting out-of-distribution samples. *International Conference on Learning Representa*tions (ICLR), 2018a.

- Lee, K., Lee, K., Lee, H., and Shin, J. A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In Advances in Neural Information Processing Systems, pp. 7167–7177, 2018b.
- Liang, S., Li, Y., and Srikant, R. Enhancing the reliability of out-of-distribution image detection in neural networks. In 6th International Conference on Learning Representations. ICLR 2018. 2018.
- Liu, W., Wang, X., Owens, J., and Li, Y. Energy-based outof-distribution detection. Advances in Neural Information Processing Systems, 2020.
- Malinin, A. and Gales, M. Predictive uncertainty estimation via prior networks. arXiv preprint arXiv:1802.10501, 2018.
- Ming, Y., Fan, Y., and Li, Y. Poem: Out-of-distribution detection with posterior sampling. In *International Con*ference on Machine Learning (ICML). PMLR, 2022.
- Morteza, P. and Li, Y. Provable guarantees for understanding out-of-distribution detection. In *Proceedings of the AAAI* Conference on Artificial Intelligence, 2022.
- Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. Reading Digits in Natural Images with Unsupervised Feature Learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning 2011, 2011.
- Nguyen, A., Yosinski, J., and Clune, J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 427–436, 2015.
- Nocedal, J. and Wright, S. *Numerical optimization*. Springer Science & Business Media, 2006.
- Perera, P. and Patel, V. M. Learning deep features for oneclass classification. *IEEE Transactions on Image Process*ing, 28(11):5450–5463, 2019.
- Rockafellar, R. T. A dual approach to solving nonlinear programming problems by unconstrained optimization. *Mathematical programming*, 5(1):354–373, 1973.

- Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Sid-diqui, S. A., Binder, A., Müller, E., and Kloft, M. Deep one-class classification. In *International conference on machine learning*, pp. 4393–4402. PMLR, 2018.
- Ruff, L., Vandermeulen, R. A., Görnitz, N., Binder, A., Müller, E., Müller, K.-R., and Kloft, M. Deep semisupervised anomaly detection. In *International Confer*ence on Learning Representations, 2020.
- Ruff, L., Kauffmann, J. R., Vandermeulen, R. A., Montavon, G., Samek, W., Kloft, M., Dietterich, T. G., and Müller, K.-R. A unifying review of deep and shallow anomaly detection. *Proceedings of the IEEE*, 2021.
- Sangalli, S., Erdil, E., Hötker, A., Donati, O., and Konukoglu, E. Constrained optimization to train neural networks on critical and under-represented classes. Advances in Neural Information Processing Systems, 34, 2021
- Song, H., Jiang, Z., Men, A., and Yang, B. A hybrid semi-supervised anomaly detection model for high-dimensional data. Computational intelligence and neuroscience, 2017, 2017.
- Sun, Y., Guo, C., and Li, Y. React: Out-of-distribution detection with rectified activations. In Advances in Neural Information Processing Systems, 2021.
- Sun, Y., Ming, Y., Zhu, X., and Li, Y. Out-of-distribution detection with deep nearest neighbors. In *International Conference on Machine Learning (ICML)*. PMLR, 2022.

References (cont.)

- Tack, J., Mo, S., Jeong, J., and Shin, J. Csi: Novelty detection via contrastive learning on distributionally shifted instances. In Advances in Neural Information Processing Systems, 2020.
- Wang, H., Liu, W., Bocchieri, A., and Li, Y. Can multilabel classification networks know what they don't know? Advances in Neural Information Processing Systems, 34, 2021.
- Xu, Y. First-order methods for constrained convex programming based on linearized augmented lagrangian function. Informs Journal on Optimization, 3(1):89-117, 2021a.
- Xu, Y. Iteration complexity of inexact augmented lagrangian methods for constrained convex programming. *Mathe*matical Programming, 185(1):199–244, 2021b.
- Yan, Y. and Xu, Y. Adaptive primal-dual stochastic gradient method for expectation-constrained convex stochastic programs. arXiv preprint arXiv:2012.14943, 2020.
- Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and Xiao, J. LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop. *arXiv:1506.03365* [cs], June 2016. arXiv: 1506.03365.
- Zagoruyko, S. and Komodakis, N. Wide Residual Networks. In Proceedings of the British Machine Vision Conference, 2016.
- Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. Understanding deep learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107– 115, 2021.
- Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Torralba, A. Places: A 10 Million Image Database for Scene Recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 40(6):1452–1464, June 2018.