ICML 2022

ViT-NeT: Interpretable Vision Transformers with Neural Tree Decoder

Interpretation of Transformers

Multi-head self attention - Allocate pair-wise attention values between all patches

Interpretation of Transformers

Multi-head self attention - Allocate pair-wise attention values between all patches

- Transformer Visualization
 - ✓ Use attention values as relevancy scores to discover important patches
 - ✓ Average the relevancy scores of multiple layers

Interpretation of Transformers

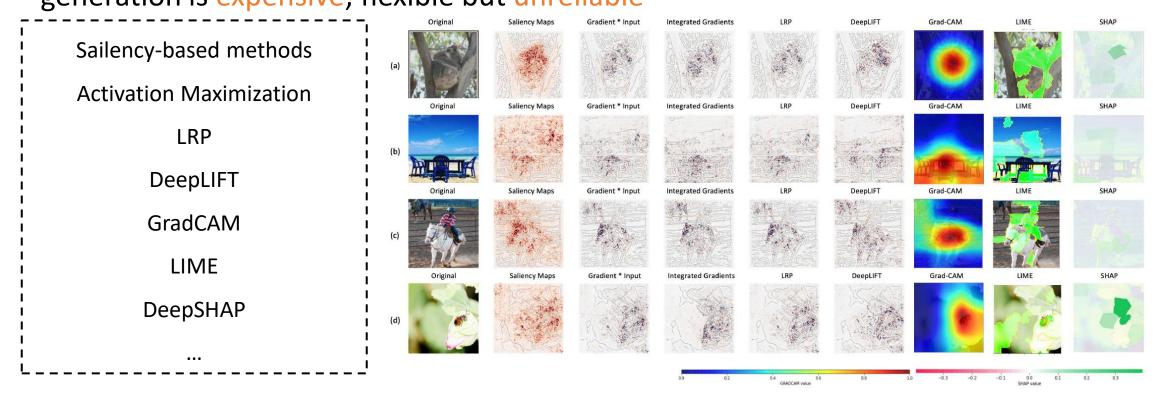
Multi-head self attention - Allocate pair-wise attention values between all patches

- Transformer Visualization
 - ✓ Use attention values as relevancy scores to discover important patches
 - ✓ Average the relevancy scores of multiple layers

- X Each layer focuses on a different patch
- X A simple Avg. can not properly consider the role of each layer
- X Important signals can be obscured

Interpretable Methods

- Post-hoc / Model-agnostic explanation
 - Difficult to achieve both accuracy and interpretability concurrently; heatmap generation is expensive; flexible but unreliable

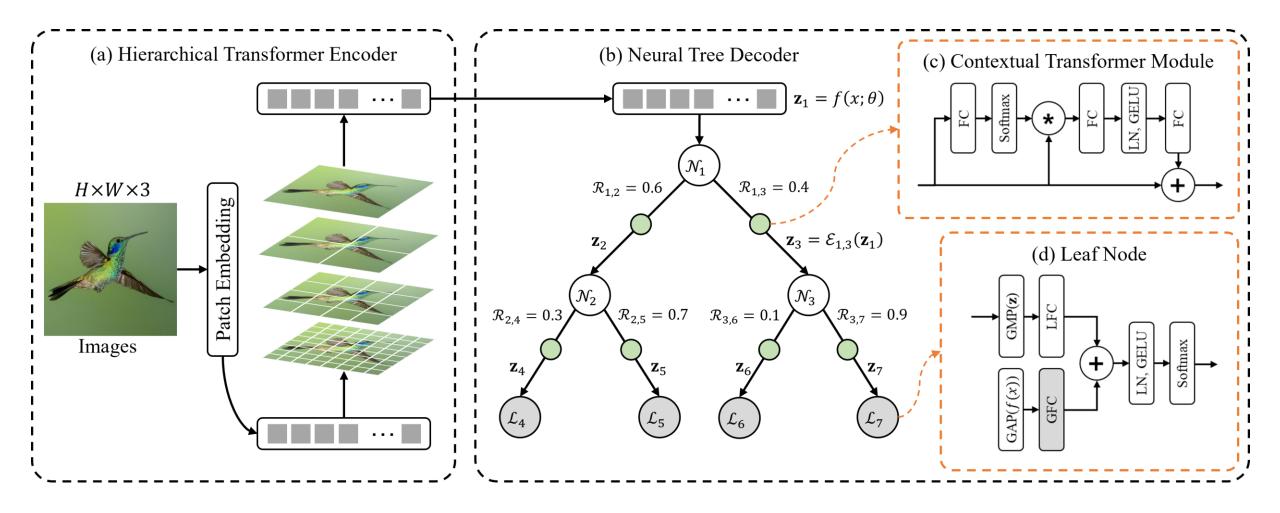


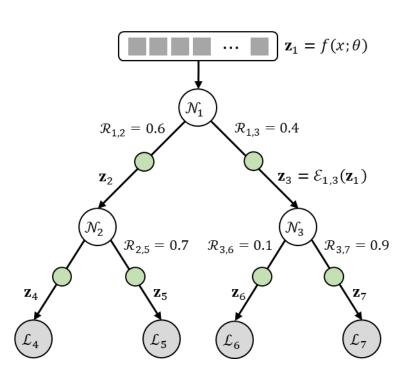
- Intrinsic interpretation
 - Integrate an interpretable model directly into existing model structures

- Intrinsic interpretation
 - Integrate an interpretable model directly into existing model structures
- Show the overall behavior of the classification model faithfully
- Provide a hierarchical description of the decision-making process

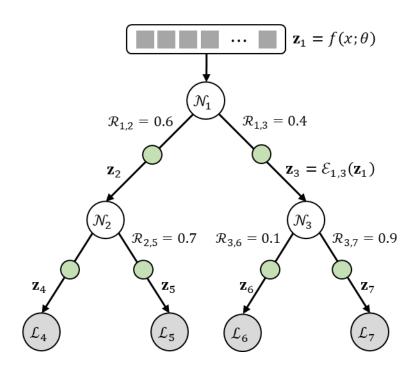
- Intrinsic interpretation
 - Integrate an interpretable model directly into existing model structures
- Show the overall behavior of the classification model faithfully
- Provide a hierarchical description of the decision-making process
- Achieve both high fine-grained accuracy and Interpretability

"Interpretation by design"



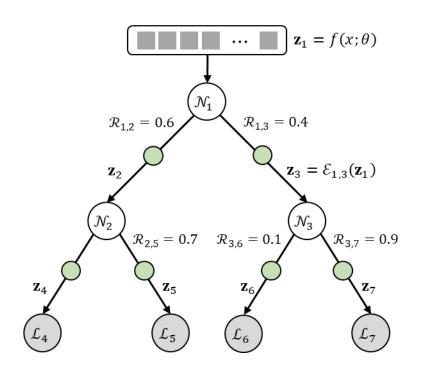


• Node (\mathcal{N}_i) – Routing score (\mathcal{R}) calculation using prototype vector (\mathcal{P})



- Node (\mathcal{N}_i) Routing score (\mathcal{R}) calculation using prototype vector (\mathcal{P})
 - 1) Similarity ($\mathcal{P} \Leftrightarrow \mathbf{z}$)

$$\mathcal{N}(\mathbf{z}_i) = \max_{\tilde{\mathbf{z}} \in \text{patches}(\mathbf{z}_i)} \log((\|\tilde{\mathbf{z}} - \mathcal{P}_i\|_2^2 + 1) / (\|\tilde{\mathbf{z}} - \mathcal{P}_i\|_2^2 + \epsilon))$$

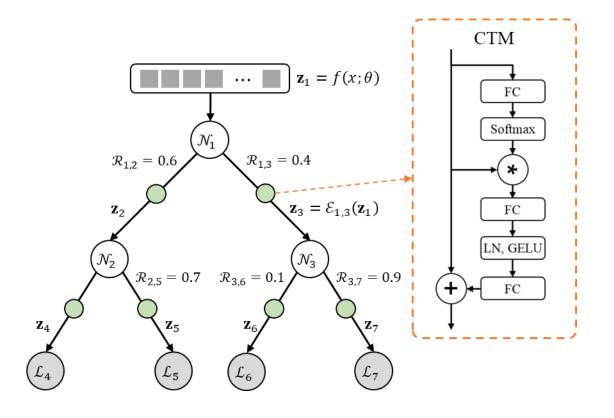


- Node (\mathcal{N}_i) Routing score (\mathcal{R}) calculation using prototype vector (\mathcal{P})
 - 1) Similarity ($\mathcal{P} \Leftrightarrow \mathbf{z}$)

$$\mathcal{N}(\mathbf{z}_i) = \max_{\tilde{\mathbf{z}} \in \text{patches}(\mathbf{z}_i)} \log((\|\tilde{\mathbf{z}} - \mathcal{P}_i\|_2^2 + 1) / (\|\tilde{\mathbf{z}} - \mathcal{P}_i\|_2^2 + \epsilon))$$

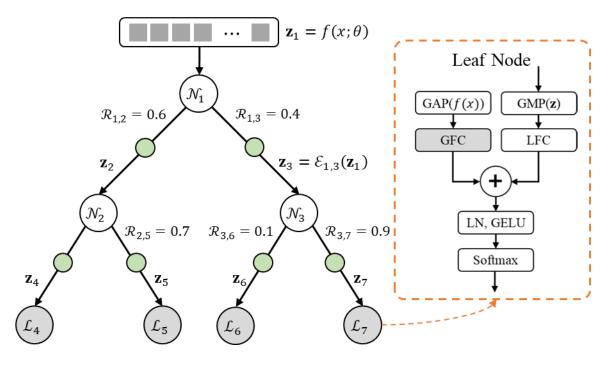
2) Calculate Routing score based on similarity

$$\mathcal{R}_{i,2\times i}(\mathbf{z}_i) = [\mathcal{N}(\mathbf{z}_i)]_0^1$$
 //The right child node $\mathcal{R}_{i,2\times i+1}(\mathbf{z}_i) = 1 - [\mathcal{N}(\mathbf{z}_i)]_0^1$ //The left child node



• Edge($\mathcal{E}_{i,j}$)

$$\mathbf{z}_j = \mathcal{E}_{i,j}(\mathbf{z}_i) = \text{CTM}(\mathbf{z}_i)$$



• Edge($\mathcal{E}_{i,j}$)

$$\mathbf{z}_j = \mathcal{E}_{i,j}(\mathbf{z}_i) = \text{CTM}(\mathbf{z}_i)$$

• Leaf (\mathcal{L}_i)

$$\rho(\mathbf{z}_{l}) = \prod_{(i,j)\in p} \mathcal{R}_{i,j} \left(\mathcal{E}_{i,j}(\mathbf{z}_{l})\right)$$

$$\mathcal{L}(\mathbf{z}_{l}, x) = \operatorname{LN}\left(\operatorname{FC}\left(\operatorname{GMP}(\mathbf{z}_{l})\right)\right) + \operatorname{FC}\left(\operatorname{GAP}\left(f(x; \theta)\right)\right)$$

$$\hat{y} = \sum_{l \in \mathbb{L}} \sigma\left(\mathcal{L}(z_{l}, x)\right) \cdot \rho_{l}(\mathbf{z}_{1})$$

Table 1. Top-1 Accuracy comparison on CUB-200-2011.

Method	Backbone	Top-1 (%)
ProtoTree† (Nauta et al., 2021)	ResNet-50	82.2
STN (Jaderberg et al., 2015)	Inception	84.1
ResNet-50 (He et al., 2016)	ResNet-50	84.5
MA-CNN (Zheng et al., 2017)	VGG-19	86.5
DCL (Chen et al., 2019b)	VGG-16	86.9
TASN (Zheng et al., 2019b)	VGG-19	87.1
DFL-CNN (Wang et al., 2018)	ResNet-50	87.4
NTS-Net (Yang et al., 2018)	ResNet-101	87.9
DCL (Chen et al., 2019b)	ResNet-50	87.8
TASN (Zheng et al., 2019b)	ResNet-50	87.9
DBTNet (Zheng et al., 2019a)	ResNet-101	88.1
FDL (Liu et al., 2020)	DenseNet-161	89.1
PMG (Du et al., 2020)	ResNet-50	89.6
API-Net (Zhuang et al., 2020)	DenseNet-161	90.0
StackedLSTM (Ge et al., 2019)	GoogleNet	90.4
DeiT (Touvron et al., 2021)	DeiT-B	87.6
SwinT (Liu et al., 2021)	SwinT-B	88.4
TransFG (He et al., 2021)	ViT-B/16	90.9
AFTrans (Zhang et al., 2021)	ViT-B/16	91.5
ViT-NeT	DeiT-B	90.1
ViT-NeT	SwinT-B	91.6

^{† 224} image input

Table 1. Top-1 Accuracy comparison on CUB-200-2011.

Method	Backbone	Top-1 (%)
ProtoTree† (Nauta et al., 2021)	ResNet-50	82.2
STN (Jaderberg et al., 2015)	Inception	84.1
ResNet-50 (He et al., 2016)	ResNet-50	84.5
MA-CNN (Zheng et al., 2017)	VGG-19	86.5
DCL (Chen et al., 2019b)	VGG-16	86.9
TASN (Zheng et al., 2019b)	VGG-19	87.1
DFL-CNN (Wang et al., 2018)	ResNet-50	87.4
NTS-Net (Yang et al., 2018)	ResNet-101	87.9
DCL (Chen et al., 2019b)	ResNet-50	87.8
TASN (Zheng et al., 2019b)	ResNet-50	87.9
DBTNet (Zheng et al., 2019a)	ResNet-101	88.1
FDL (Liu et al., 2020)	DenseNet-161	89.1
PMG (Du et al., 2020)	ResNet-50	89.6
API-Net (Zhuang et al., 2020)	DenseNet-161	90.0
StackedLSTM (Ge et al., 2019)	GoogleNet	90.4
DeiT (Touvron et al., 2021)	DeiT-B	87.6
SwinT (Liu et al., 2021)	SwinT-B	88.4
TransFG (He et al., 2021)	ViT-B/16	90.9
AFTrans (Zhang et al., 2021)	ViT-B/16	91.5
ViT-NeT	DeiT-B	90.1
ViT-NeT	SwinT-B	91.6

^{† 224} image input

Table 2. Top-1 Accuracy comparison on Stanford Dogs.

Method	Backbone	Top-1 (%)
MaxEnt (Dubey et al., 2018)	DenseNet-161	83.6
FDL (Liu et al., 2020)	DenseNet-161	84.9
DFL-CNN (Wang et al., 2018)	ResNet-50	84.9
RA-CNN (Fu et al., 2017)	VGG-19	87.3
Cross-X (Luo et al., 2019)	ResNet-50	88.9
SEF (Luo et al., 2020)	ResNet-50	88.8
API-Net (Zhuang et al., 2020)	ResNet-101	90.3
DeiT (Touvron et al., 2021)	DeiT-B	91.5
SwinT (Liu et al., 2021)	SwinT-B	88.0
TransFG (He et al., 2021)	ViT-B/16	90.4
AFTrans (Zhang et al., 2021)	ViT-B/16	91.6
ViT-NeT	DeiT-B	93.6
ViT-NeT	SwinT-B	90.3

Table 3. Top-1 Accuracy comparison on Stanford Cars.

Method	Backbone	Top-1 (%)
ProtoTree† (Nauta et al., 2021)	ResNet-50	86.6
RA-CNN (Fu et al., 2017)	VGG-19 DenseNet-161	92.5 93.0
MaxEnt (Dubey et al., 2018) DFL-CNN (Wang et al., 2018)	ResNet-50	93.0
SEF (Luo et al., 2020)	ResNet-50	94.0
FDL (Liu et al., 2020)	DenseNet-161	94.2
Cross-X (Luo et al., 2019)	ResNet-50	94.6
MMAL (Balikas et al., 2017)	ResNet-50	95.0
PMG (Du et al., 2020)	ResNet-50	95.1
API-Net (Zhuang et al., 2020)	DenseNet-161	95.3
DeiT (Touvron et al., 2021)	DeiT-B	92.4
SwinT (Liu et al., 2021)	SwinT-B	94.5
TransFG (He et al., 2021)	ViT-B/16	94.1
AFTrans (Zhang et al., 2021)	ViT-B/16	95.0
ViT-NeT	DeiT-B	94.7
ViT-NeT	SwinT-B	<u>95.0</u>

^{† 224} image input

Table 3. Top-1 Accuracy comparison on Stanford Cars.

Method	Backbone	Top-1 (%)
ProtoTree† (Nauta et al., 2021) RA-CNN (Fu et al., 2017) MaxEnt (Dubey et al., 2018) DFL-CNN (Wang et al., 2018) SEF (Luo et al., 2020) FDL (Liu et al., 2020) Cross-X (Luo et al., 2019) MMAL (Balikas et al., 2017) PMG (Du et al., 2020) API-Net (Zhuang et al., 2020)	ResNet-50 VGG-19 DenseNet-161 ResNet-50 ResNet-50 DenseNet-161 ResNet-50 ResNet-50 DenseNet-161	86.6 92.5 93.0 93.1 94.0 94.2 94.6 95.0 95.1 95.3
DeiT (Touvron et al., 2021) SwinT (Liu et al., 2021) TransFG (He et al., 2021) AFTrans (Zhang et al., 2021) ViT-NeT ViT-NeT	DeiT-B SwinT-B ViT-B/16 ViT-B/16 DeiT-B SwinT-B	92.4 94.5 94.1 95.0 94.7 <u>95.0</u>

^{† 224} image input

Table 4. Ablation study between pooling methods on CUB-200-2011 dataset.

Pooling	Top-1 (%)
GAP	91.4
GMP	91.6

Table 5. Ablation study on the contextual transformer module on CUB-200-2011 dataset.

Backbone	Use CTM	Top-1 (%)
DeiT-B	X	89.3 90.1
SwinT-B	×	90.7 91.6

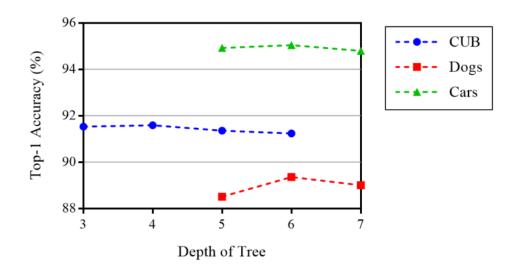


Figure 3. Top-1 Accuracy of a ViT-NeT with effect of the depth of the neural tree decoder on CUB-200-2011, Stanford Dogs and Stanford Cars.

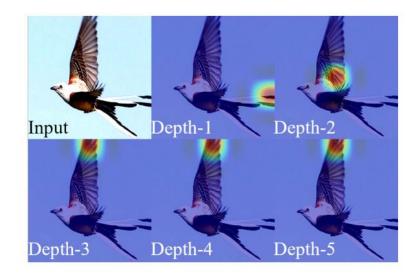


Figure 4. Prototype responses of a specific decision path in the NeT with the depth of 5. As the tree depth increases, model overfitting occurs, resulting in identical prototype responses at the tip of the bird's wing.

Input image Parakeet auklet Yellow breasted chat Crested auklet Gray crowned rosy finch Least flycatcher

Figure 5. Visualized local interpretations showing sequential decision-making on randomly sampled images. The proposed NeT found tails, beaks, wings, feathers, claws, and eyes in the given images.

Conclusion

- The first proposal of decision-making process interpretation for ViT
- Integrated interpretability directly into the structure of classification models to provide intrinsic interpretation
- Provides local interpretation showing the routing of specific input images
- Achieved both high accuracy and interpretability of ViT

Thanks!

eddiesangwonkim@gmail.com

https://github.com/jumpsnack/ViT-NeT